图 21 翼尖有垂直尾翼时升阻比与偏航角及 AOA 相互作用。 57 图 22 垂直尾翼位于机翼侧面时偏航角和 AOA 对升阻比的相互作用......................................................................................................................... 58 图 23 垂直尾翼位于翼尖时 AOA 和偏航角对 CYM 影响的 3D 绘图......................................................................................................................... 58 图 24 垂直尾翼位于机翼侧面时 CYM 的 AOA 和偏航角 3D 绘图......................................................................................................................... 59 图 25 推进分析中电流和 AOA CD 影响的 3D 绘图..................................................................................................................... 5 ........................ 61 图 26 未使用推进系统时 A O A 对 CL 的影响 .............................................................. 61 图 27 带推进系统且电流 = 10 AMPS 时 A O A 对 CL 的影响 ................................................................................................................ 62 图 28 未使用推进系统时左侧控制面偏转对 C RM 的影响 ................................................................................................................................ 63 图 29 带推进系统且电流 = 10 AMPS 时左侧控制面偏转对 C RM 的影响 ................................................................................................................
最近,研究人员使用细长的静压探头在 Longshot 高超声速风洞的自由流中进行测量。他们发现,压力大于假设等熵喷嘴流获得的理论值。现在研究了喷嘴膨胀过程中流动凝结的存在,这可能是非等熵性的来源,以解释自由流静压不匹配。研究了不同的停滞温度,它们会延迟或促进流动成核。经证实,Longshot 风洞的标准操作条件没有凝结。在较低停滞温度下进行的实验成功促进了氮的凝结,静压探头可以检测到。与异质成核理论一致,已经实现了微弱的流动过饱和。证明了静压探头的精确性能及其对高超声速流动表征的实用性。
图 40 - 第一种设计方案。所有模块都是独立的。这提供了更大的灵活性,但重量更重、占用更多空间且成本更高。 ................................................................................................................... 56 图 41 - 第二种设计方案。这将图像处理、CCU 和加密模块组合在一个处理器上。虽然这可以节省资金并减轻重量,但内存容量是一个问题,并且可能更难实现图像处理。 ................................................................................................................ 57 图 42 - 第三种设计方案。这提供了允许由 CCU 的特定加密模块进行加密的优势。这还可以节省重量和资金,同时允许为其挑选更适合图像处理的单独模型。 ................................................................................................ 58 图 43 - OMAP 4470 架构。这显示了 OMAP 内部的所有处理器以及无线、音频和其他连接端口 [59]。................................................................................................ 61 图 44 - MSP430 微处理器架构。这显示了所有内存、ADC、DAC、输入/输出端口和时钟 [63]。................................................................................................................ 64 图 45 - 典型的数字信号处理系统。................................................................
在飞机开发中,在系统进行物理测试之前和之后,了解和评估系统的行为、性能、安全性和其他方面至关重要。仿真模型用于获取知识,以便在所有开发阶段做出决策。建模和仿真 (M&S) 在飞机系统开发中,例如燃料、液压和电力系统,如今已成为设计过程的重要组成部分。通过 M&S,可以在流程的早期发现功能或系统中的问题。越来越多的最终系统验证依赖于仿真模型的结果,而不是昂贵的飞行测试。因此,对复杂系统的集成模型及其验证的需求正在增加。不仅需要一个模型,还需要几个具有已知精度和有效性范围的交互模型。计算机性能和建模与仿真工具的开发使大规模仿真成为可能。本论文包括四篇与这些主题相关的论文。第一篇论文描述了一种建模技术,即托管仿真,即如何使用来自不同工具的模型来模拟完整的系统,例如来自一个工具的控制软件和来自另一个工具的设备模型。第二篇论文描述了 M&S 在飞机开发中的应用。第三篇和第四篇论文描述了如何通过敏感性分析和不确定性来源来增加对模型有效性的了解。在论文中
我们要感谢 Michael A. Demetriou 教授和 David J. Olinger 教授给予我们参与该项目的机会。他们在整个过程中的持续指导和支持为我们提供了必要的方向和动力,让我们能够坚持到最后。我们还要感谢 Alex Camilo 设计和构建我们的机载电子套件。我们要感谢 Adriana Hera、Raffaele Potami 和 Kimon Simeonidis 协助和指导我们开发 matlab 工具以及设置和开展校准实验。此外,我们还要感谢 John Blandino 教授、Roger Steele 和化学系对我们设备需求的帮助。此外,我们还要感谢 Neil Whitehouse 在制造项目所需组件方面提供的持续支持和指导。
我们要感谢 Michael A. Demetriou 教授和 David J. Olinger 教授给予我们参与该项目的机会。他们在整个过程中的持续指导和支持为我们提供了必要的方向和动力,让我们能够坚持到最后。我们还要感谢 Alex Camilo 设计和构建我们的机载电子套件。我们要感谢 Adriana Hera、Raffaele Potami 和 Kimon Simeonidis 协助和指导我们开发 matlab 工具以及设置和开展校准实验。此外,我们还要感谢 John Blandino 教授、Roger Steele 和化学系对我们设备需求的帮助。此外,我们还要感谢 Neil Whitehouse 在制造项目所需组件方面提供的持续支持和指导。
Robyn Hopcroft、Eleanore Burchat 和 Julian Vince 空中作战部 国防科学技术组织 DSTO-GD-0463 摘要 本文献综述概述了与无人机 (UAV) 操作相关的人为因素问题。特别是,考虑了这些问题与采购用于海上巡逻和响应行动的高度自主、高空长航时 (HALE) 无人机的关系。在高度自动化的无人机系统中,最佳任务性能将要求操作员和自动化系统的角色互补。因此,解决了可能阻碍两者之间合作的因素,并提出了缓解潜在问题的建议。然后讨论转向人机界面 (HMI) 的设计,提供有关已建立的 HMI 设计原则和与操作员与飞机分离有关的问题的信息。最后部分涵盖了飞行期间控制权移交的空中交通管理程序、数据链路延迟及其对团队动态的影响、机组人员的选择以及无人机机组人员角色的划分。发布限制已批准公开发布
委员会成员批准了 Joji Matsumoto Frank K. Lu 的硕士论文 ___________________________________________
1. 本军事手册经美国陆军导弹司令部批准使用,可供国防部所有部门和机构使用。 2. 有益的评论(建议、补充、删除)和任何可能有助于改进本文档的相关数据应发送至:美国陆军导弹司令部指挥官,收件人:AMSMI- RD-SE-TD-ST Redstone Arsenal,AL 35809,请使用本文档末尾的自备标准化文档改进提案(DD 表格 1426)或通过信函发送。 3. 本手册是在美国陆军物资司令部工程设计手册计划的赞助下开发的,该计划由美国陆军管理工程学院指导。三角研究研究所是本手册编写的主要承包商,编写合同编号为 DAAG34-73-C-0051。
1. 本军事手册经美国陆军导弹司令部批准使用,可供国防部所有部门和机构使用。 2. 有益的评论(建议、补充、删除)和任何可能有助于改进本文档的相关数据应发送至:美国陆军导弹司令部指挥官,收件人:AMSMI- RD-SE-TD-ST Redstone Arsenal,AL 35809,请使用本文档末尾的自备标准化文档改进提案(DD 表格 1426)或通过信函发送。 3. 本手册是在美国陆军物资司令部工程设计手册计划的赞助下开发的,该计划由美国陆军管理工程学院指导。三角研究研究所是本手册编写的主要承包商,编写合同编号为 DAAG34-73-C-0051。