现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管全球范围内 LOC-I 仅占所有分析事故的 9%,但国际航空运输协会报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面临 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 结构。HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行整体研究有助于在日常操作中可视化 LOC-I 期间的潜在条件和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。它表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
飞行机组训练手册 (FCTM) 旨在提供支持飞行机组操作手册 (FCOM) 中列出的程序的信息以及帮助飞行员安全高效地完成这些程序的技术。FCTM 的编写格式比 FCOM 更通用。它不考虑飞机配置差异,除非这些差异对所讨论的程序或技术有影响。例如,FCTM 指出,“当襟翼收起且空速接近机动速度时,确保设置 CLB 推力。”这句话并非旨在告诉机组如何设置爬升推力,只是强调机组必须确保设置 CLB 推力。众所周知,设置爬升推力所需的机组操作在不同型号中是不同的。有关如何设置爬升推力的信息,需要参考适用的 FCOM。
1.如果另一个菜单/列表处于活动状态,请按 DCP 上的 RADIO 按钮显示 MFD 收音机菜单。2.如果需要,请按 1/2 按钮交替选择 1 侧收音机和 2 侧收音机。3.转动 DCP 上的 MENU 旋钮,将收音机菜单上的选择框移动到收音机(COM、NAV、ATC/TCAS 等)要调谐的频率或频道。4.转动 DCP 上的 TUNE 旋钮,调谐所需的频率或频道。- 较大的(外部旋钮)调整小数点左侧的数字。- 较小的(内部旋钮)调整小数点右侧的数字。5.要激活新频率/频道: - 按下调谐旋钮中央的传输按钮。6.要更改模式、调整静噪和收音机的其他非调谐功能: - 转动 MENU 旋钮将选择框移动到适当的收音机(COM1、NAV2、ATC/TCAS 等)- 按下 DCP 上的 RADIO 按钮选择子菜单。- 转动 MENU 旋钮将选择框移动到子菜单上。- 转动 DATA 旋钮更改模式或选择选项(例如调谐模式、静噪级别、交通模式等)- 按下 PUSH SELECT 按钮浏览可用选项。(PUSH SELECT 按钮在选择选项时的作用与 DATA 旋钮相同)- 要退出子菜单,请按下 RADIO 按钮。显示屏返回到广播菜单。
飞机通用、应急设备、门、窗......................................................................................1 空气系统......................................................................................................2 防冰、防雨......................................................................................................3 自动飞行......................................................................................................4 通信......................................................................................................5 电气......................................................................................................6 发动机、APU.............................................................................................7 防火.............................................................................................................8 飞行控制......................................................................................................9 飞行仪表、显示器......................................................................................10 飞行管理、导航.............................................................................................11 燃料.............................................................................................................12 液压系统.............................................................................................................13 起落架.............................................................................................................14 警告系统.............................................................................................................15
现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管 LOC-I 在全球范围内仅占所有分析事故的 9%,但国际航空运输协会 (IATA) 报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面对 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 的结构。来自 HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行全面调查有助于直观地了解日常操作中 LOC-I 期间的潜在情况和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。这表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
前言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0 型号标识。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0.1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0.2 缩写。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0.3 修订记录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...0.4 有效页面列表 ..< div> 。。。。。。。。。。。。。。。 < /div>........... div>........0.5 一般信息。.........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 地面行动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 起飞和初始爬升。....< div> 。。。。。。。。。。。。。。。 < /div>.....。。。。。。。。。。。。。。。3 爬升、巡航、下降和保持 .........................4 进近和复飞 ....................。。。。。。。。。5 着陆。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 次演习。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 非正常操作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 附录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.A 操作信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。A.1 补充信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。A.2 索引。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。索引
现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管全球范围内 LOC-I 仅占所有分析事故的 9%,但国际航空运输协会报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面临 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 结构。HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行整体研究有助于在日常操作中可视化 LOC-I 期间的潜在条件和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。它表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管全球范围内 LOC-I 仅占所有分析事故的 9%,但国际航空运输协会报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面临 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 结构。HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行整体研究有助于在日常操作中可视化 LOC-I 期间的潜在条件和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。它表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
现代喷气式飞机驾驶舱自动化程度的提高旨在降低飞行中失去控制 (LOC-I) 等不良飞机状态 (UAS) 情况的风险。尽管全球范围内 LOC-I 仅占所有分析事故的 9%,但国际航空运输协会报告称,2017 年所有事故死亡人数中 58% 是由 LOC-I 造成的。本文的重点是回答威胁和错误管理以及机组资源管理 (CRM) 技术在面临 LOC-I 威胁时是否是一种有效的风险管理工具。分析了三份 LOC-I 最终飞机事故报告,以了解这些飞行期间的人为因素 (HF) 结构。HF 领域的方法,例如通用错误建模系统 (GEMS) 和基于技能、规则和知识 (SRK) 的错误方法,为识别潜在发现提供了宝贵的见解。对飞行路径管理中的认知结构进行整体研究有助于在日常操作中可视化 LOC-I 期间的潜在条件和认知要求高的任务。考虑到本文考虑的案例数量有限,应将其视为 LOC-I 事故分析的概述。它表明,领导力和团队合作作为 CRM 培训的重要方面,可以作为缓解 HF 问题和 LOC-I 风险的关键策略。
VTOL.2600 飞行机组舱 (a) 飞行机组舱布置(包括飞行机组视野)及其设备必须允许飞行机组在飞机飞行包线内执行任务,而无需过度集中注意力、提高技能、保持警觉或疲劳。 (b) 申请人必须安装飞行、导航、监视和升力/推力系统安装控制装置和显示器,以便合格的飞行机组可以监视和执行与系统和设备预期功能相关的规定任务。系统和设备设计必须考虑到飞行机组的错误,因为这些错误可能会导致额外的危险。 (c) 对于增强类,飞行机组界面设计必须允许在任何一个挡风玻璃板的视野丧失后继续安全飞行和着陆。