2 James O.Young,《迎接超音速飞行的挑战》(加利福尼亚州爱德华兹空军基地:空军飞行测试中心历史办公室,1997 年),第 1-2 页。1-2;John V. Becker,《高速前沿:四个 NACA 计划的案例历史》(华盛顿特区:NASA SP-445,1980 年),特别是。第 95 页。这里应该指出,压缩性的首次研究涉及螺旋桨的尖端速度,日期为 1918 年至 1923 年。关于这些,请特别参阅 John D. Anderson, Jr. 的“超音速飞行研究和突破音障”,摘自《从工程科学到大科学:NACA 和 NASA 科利尔奖研究项目获奖者》,编辑。Pamela Mack(华盛顿特区:NASA SP-4219,1998 年),第66-68 页。本文还对约翰·斯塔克及其同事在 NACA 兰利纪念航空实验室对飞机(而不是螺旋桨)压缩性问题的早期研究进行了出色的报道。
尊重所有人的公民权利 为纪念女同性恋、男同性恋、双性恋和变性者 (LGBT) 骄傲月,格伦彩虹联盟顾问小组于 6 月 28 日举办了第二届年度开放日和午餐会。主讲人、NASA 总部高级民权分析师 David Chambers 讨论了公民权利对所有员工的重要性以及解决工作场所平等机会问题的现有流程。格伦彩虹联盟协助并建议格伦多元化和平等机会办公室和中心管理层促进安全和包容的工作环境,无论性取向或性别如何,都不受歧视和骚扰。图为:Chambers(前排右)与格伦彩虹联盟顾问小组成员一起支持民权。
飞行研究 (RIF) 和奥本大学正在开发一种先进、强大的工具,该工具可以模拟和建模分布式电力推进 (DEP) 支持的城市空中交通 (UAM) 车辆概念的阵风和尾流涡流遭遇。这将允许在设计周期的早期发现车辆设计中的潜在缺陷,并在必要时使用阵风载荷缓解技术进行缓解。
当今,无人驾驶飞行器 (UAV) 广泛应用于军事、民用和研究领域。对可靠且低成本的 UAV 系统的需求持续增长。对于小型到微型 UAV 系统(翼展小于 2 米)尤其如此,由于需求量大和可靠性不足,大多数系统仍以原型形式部署。这些飞行器的建模、测试和飞行控制方面的改进将有助于提高其可靠性和小型 UAV 在运行过程中的性能。有人驾驶飞机开发周期 [1, 2] 中使用的传统方法既费时又费资源。将同样的技术应用于小型 UAV 并不现实。明尼苏达大学航空航天工程与力学系 (AEM) 的 UAV 研究小组专注于开发和实施低成本、开源小型无人驾驶飞行器 (UAV) 飞行研究设施。该设施的目标是支持部门内的研究活动,包括控制、导航和制导算法、嵌入式故障检测方法和系统识别工具。该系统主要由商用现货 (COTS) 组件构建,以最大限度地降低总体材料和开发成本。此外,整个架构都是开放且可用的
2 James O.Young,《迎接超音速飞行的挑战》(加利福尼亚州爱德华兹空军基地:空军飞行测试中心历史办公室,1997 年),第 1-2 页。1-2;John V. Becker,《高速前沿:四个 NACA 计划的案例历史》(华盛顿特区:NASA SP-445,1980 年),特别是。第 95 页。这里应该指出,压缩性的首次研究涉及螺旋桨的尖端速度,日期为 1918 年至 1923 年。关于这些,请特别参阅 John D. Anderson, Jr. 的“超音速飞行研究和突破音障”,摘自《从工程科学到大科学:NACA 和 NASA 科利尔奖研究项目获奖者》,编辑。Pamela Mack(华盛顿特区:NASA SP-4219,1998 年),第66-68 页。本文还对约翰·斯塔克及其同事在 NACA 兰利纪念航空实验室对飞机(而不是螺旋桨)压缩性问题的早期研究进行了出色的报道。
摘要:对于飞行员来说,应对焦虑的能力在飞行过程中至关重要,因为他们可能会面临压力。根据大五人格量表,这种能力可以通过两种重要的人格特质进行调节:尽责性和神经质。前者与注意力有关,后者与对焦虑刺激的注意力偏差有关。鉴于目前用于检测用户状态的监测系统的发展,该系统可以并入驾驶舱,因此需要估计它们对个体间人格差异的稳健性。事实上,几种情绪识别方法都是基于可以通过特定人格特征进行调节的生理反应。对 20 名飞行员的人格特质进行了评估。之后,他们进行了两次连续的模拟飞行,分别在没有和有社会压力的情况下,同时测量皮肤电活动。在第二次飞行之前,也就是在压力诱发条件之前,对他们的主观焦虑进行了评估。结果表明,神经质得分越高,认知焦虑和躯体焦虑越呈正相关。此外,在社会压力下,尽责性得分越高,与皮肤电稳定性呈正相关,即皮肤电导反应次数越少。这些关于自我报告和生理反应的结果都支持将性格差异纳入飞行员的状态监测中。
数字电子发动机控制 (DEEC) 是为 FlOO-PW-100 涡扇发动机开发的全权限数字发动机控制;它已在美国宇航局艾姆斯研究中心的德莱顿飞行研究设施 (DFRF) 上对一架 F-15 飞机进行了飞行测试。飞行测试的目的是评估整个 F-15 飞行包线内的 DEEC 硬件和软件。实施了新的实时数据缩减和数据显示系统。开发了新的测试技术并加强了推进测试工程师和飞行员之间的协调,从而有效利用了测试时间,减少了飞行员的工作量,并大大提高了数据质量。演示了发动机压力比 (EPR) 控制模式。非增强油门瞬变和发动机性能令人满意。
美国宇航局阿姆斯特朗飞行研究中心的创新者开发了一种用于捕捉超音速飞机产生的冲击波图像的新型系统。利用天体背景定向纹影技术使用天体(例如太阳)作为背景,以获得可测量的全尺寸飞机冲击波图像。这项获得专利的图像处理技术可以捕捉每个冲击波的数百个观测结果,还可用于可视化建筑和可再生能源行业的空气密度梯度。
Abbott 博士从美国国家航空航天局 (NASA) 来到 FAA,在那里她负责领导分析、模拟和飞行研究,其具体目标是提高航空安全性和运营效率。她是皇家航空学会会员、美国航空航天学会副研究员,也是飞行员荣誉团成员。她是一名经过认证的私人飞行员,接受过多架大型运输机的熟悉培训。Abbott 博士在克里斯托弗纽波特学院获得数学和信息科学学士学位,在乔治华盛顿大学获得计算机科学硕士学位,在罗格斯大学获得计算机科学博士学位。