弥补可再生能源发电与消费分配之间的脱节。虽然存在抽水蓄能和压缩空气等固定式储能,但它们缺乏灵活的外形尺寸和较低的能源效率限制了它们在城市社区的可扩展应用。[2] 因此,人们认为电池更适合用于大规模储能,能够部署在家庭、城市和远离电网、传统电力基础设施无法到达的地方。当今的电池技术以锂离子电池 (LIB) 和铅酸电池为主。虽然 LIB 在电动汽车和便携式电子设备等新兴市场表现出色,但其在大规模电网储能中的部署仍然受到高成本、低安全性和可持续性问题的阻碍。[3] 迫切需要其他能够满足低成本、高性能和安全性综合特性的替代方案。此外,迄今为止,处理大量报废电池的方法尚未完全开发出来,导致电池废物的积累,这可能会抵消其理应实现的环境效益。在成本方面,数十年的工业商业化使 LIB 的价格与刚进入市场时相比下降了一个数量级以上。这是通过改进 LIB 的活性成分(例如更好的电极和电解质材料)和非活性成分(例如集电器、隔膜、包装等)以及简化制造协议来实现规模经济而实现的。然而,如今 LIB 的生产水平优化已接近饱和极限,越来越明显的是,消除使用昂贵的元素(如锂、钴和镍)对于进一步降低每千瓦时成本($/千瓦时)至关重要。[4] 对能源安全的担忧和供应链中的地缘政治考虑也促使无法在当地获得此类材料的国家寻求替代化学品来满足储能需求。因此,钠离子电池 (NIB) 及其商业化有望成为电网储能应用中 LIB 的替代品之一。NIB 具有许多优点,包括元素丰富、每千瓦时成本低以及对环境无害。虽然人们普遍认为 NIB 的电化学性能不如传统的 LIB,但