表 2-1:估计类别的数据来源汇总 ...................................................................................................... 20 表 3-1. 纳米比亚根据《巴黎协定》第四条作出的国家自主贡献的 CTF 描述,包括更新 ................................................................................................................ 19 表 3-2. 选定指标的详情。 ...................................................................................................................... 21 表 3-3. 纳米比亚 CTF 表 1 结构化摘要:选定指标的描述。 ............................................................................. 21 表 3-4. 纳米比亚 CTF 表 2 结构化摘要:理解 NDC 所需的定义 ............................................................................. 22 表 3-5. - 纳米比亚 CTF 表 3 结构化摘要:结构化摘要:方法和核算方法——与《巴黎协定》第四条第 13 和 14 款以及第 4/CMA 1 号决定的一致性。 ............................................................................................................................. 23 表 3-6. 支持气候变化治理和 NDC 实施的主要法律和政策框架摘要。 ........................................................................................................................... 32 表 3-7. 各部门的减缓和适应政策和措施 .............................................................................................. 37 表 3-8. 逐步淘汰的政策 ........................................................................................................................ 59 表 3-9. 按照通用报告表 10 排放趋势汇总的温室气体排放量和清除量 – 汇总 ............................................................................................. 62 表 3-10 温室气体排放情景汇总 ............................................................................................................. 66 表 3-11. 按部门和气体划分的历史排放量和清除量(1990-2022 年) ............................................................................. 74 表 3-12. 按部门和气体划分的预测(2025-2035 年) ............................................................................................. 75 表 4-1. 纳米比亚主要气候变量统计汇总 ............................................................................................. 94 表 4-2. 适应重点领域、措施、行动和成本。 (来源:第二次更新的 NDC).................................................................................... 152 表 4-3. 部分已完成或正在进行的适应项目..................................................................................... 167 表 6-1. 纳米比亚根据《巴黎协定》第 11 条获得的能力建设支持......................................................................... 197
揭开粒子物理学的奥秘:尽情参与实践活动和品尝含酒精的液氮冰淇淋。品酒:品尝来自 Keel Farms 的精选葡萄酒,售完即止。现场音乐:欣赏 Ed John 的现场表演,度过愉快的夜晚。大奖赢取:参加独家抽奖,就有机会赢取令人惊叹的奖品。引人入胜的杂技:欣赏坦帕杂技团 Acrobellum 的惊心动魄的表演。美味佳肴:您可以从 Zydeco Brew Werks 购买食物和饮料,犒劳自己。量子倒计时将于 2024 年 12 月 31 日星期二晚上 9:00 至凌晨 12:30 在北坦帕上城区 4801 E. Fowler Ave. 的 MOSI 举行。量子倒计时的门票现已开始发售,由于座位有限,强烈建议提前购买。此活动严格限制 18 岁以上人士参与,购买酒精饮料需出示有效 21 岁以上身份证件。MOSI 会员门票 20 美元,非会员门票 30 美元。如需门票、可选 VIP 套餐和更多信息,请单击此处。关于坦帕科学与工业博物馆 MOSI MOSI 是坦帕湾的科学与创新中心,位于北坦帕 4801 E. Fowler Ave. 欢迎来到科学与工业博物馆,在这里科学的奇迹栩栩如生。我们是一个动手实践的科学中心,致力于互动学习和有趣的探索。通过引人入胜的永久和轮换展览以及超凡脱俗的项目,MOSI 让所有人都能接触到科学和技术。快来加入我们的探索之旅,解开我们周围世界的奥秘。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
摘要尽管首次尿液 (FVU) 越来越多地被认可为一种可靠的人乳头瘤病毒 (HPV) 检测样本,但缺乏经过充分验证的检测方法,无法对 FVU 样本进行疫苗影响监测所需的完整定量基因分型。Allplex HPV28 检测能够单独检测 28 种 HPV 基因型,是一种很有前途的方法。我们旨在评估其在 FVU 样本上的基因型特异性性能,并优化 FVU 预分析。我们选择了使用 Colli-Pee 装置 (20 mL,带 UCM) 采集的 701 个 FVU 样本,这些样本基于之前使用 GP5+/6+-PCR 反向线印迹 (GP5+/6+ RLB) 和 Amicon 过滤 (AF) 后的 E7-MPG 进行的测试,以富集 HPV 阳性 (n = 630)。我们首先评估了根据不同的预分析方法 Allplex HPV28 基因型特异性阳性的可比性和一致性。随后,我们对 Allplex HPV28 与 GP5+/6+ RLB AF 和 E7-MPG AF 进行了基因型特异性比较。在比较预离心和非离心 DNA 提取时,以及在比较手动和自动 DNA 提取时,Allplex HPV28 检测的 HPV 阳性率没有显著差异。在 Allplex HPV28 和 GP5+/6+ RLB AF 之间观察到了良好的基因型特异性一致性,Allplex HPV28 对所有 28 种 HPV 基因型的敏感性略高(平均 Allplex HPV28:GP5+/6+ RLB AF 比率为 1.729)。与 E7-MPG AF 相比,Allplex HPV28 对所有 21 种重叠 HPV 基因型的灵敏度较低(平均 Allplex HPV28:E7-MPG AF 比率为 0.588)。本研究结果结合实际实施考虑,支持在自动或手动 DNA 提取后使用 Allplex HPV28 检测,无需预离心,用于基于 FVU 样本的 HPV 研究,尤其是用于疫苗对 HPV 流行率影响监测的研究。
自1997年以来,联邦航空管理局(FAA)和EuroControl共同组织了两次著名的航空运输中的Scien Tific会议:空中交通管理(ATM)研发(R&D)研讨会(R&D)研讨会和空中运输研究国际会议(ICRAT)。这些事件已在美国和欧洲的各个地点托管,最近在亚洲举办,促进了研究结果的交换,并就航空跨性别和ATM的关键问题建立共识。这些会议在建立和增强领先专家和研究人员之间的专业关系方面起着重要作用。介绍的论文在我们的网站上公开可用,构成了航空运输研究的宝贵存储库。
3分散的培训和执行(DTE)19 3.1 DTE概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 3.2分散,基于价值的方法。。。。。。。。。。。。。。。。。。。。。。。。。20 3.2.1独立Q学习(IQL)。。。。。。。。。。。。。。。。。。。。。。。。20 3.2.2提高IQL的性能。。。。。。。。。。。。。。。。。。。。。。22 3.2.3深度扩展,问题和固定。。。。。。。。。。。。。。。。。。。。。。24 3.3分散政策梯度方法。。。。。。。。。。。。。。。。。。。。。。。。28 3.3.1分散的增强。。。。。。。。。。。。。。。。。。。。。。。。。28 3.3.2独立演员评论家(IAC)。。。。。。。。。。。。。。。。。。。。。。。。28 3.3.3其他分散政策梯度方法。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>30 3.4其他主题。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30 div>
1 布基纳法索中西部地区理事会生物医学部卫生科学研究所,BP 18 Nanoro; berengerkabore@yahoo.fr(BK); rouambatoussaint@gmail.com (土耳其); hamidou_ilboudo@hotmail.com(夏威夷); palponet@yahoo.fr(波兰); halidoutinto@gmail.com (HT)2 纳诺罗临床研究部门,BP 18 纳诺罗,布基纳法索; meli.sougue@gmail.com(MMHTS); nadege.zoma@yahoo.fr(新西兰); kazienga_adama@yahoo.fr (AK)3 Tengandogo 教学医院,CMS 104,BP 11 瓦加杜古,布基纳法索; dantola.kain@ujkz.bf 4 ISGlobal,巴塞罗那大学医院,08036 巴塞罗那,西班牙; quique.bassat@isglobal.org 5 Manhiça 健康研究中心 (CISM),92 Avenida Cahora Bassa,马普托,莫桑比克 6 ICREA,Pg. Lluís Companys 23, 08010 巴塞罗那,西班牙 7 巴塞罗那大学 Sant Joan de Déu 医院儿科,Passeig Sant Joan de Déu 2, 08950 Esplugues,巴塞罗那,西班牙 8 CIBER de Epidemiología y Salud Pública III,Instituto de Salud,28, 101. 29 马德里,西班牙 * 通讯作者:marctahita@yahoo.fr;电话:+226-78809556
Frangoul H. 等人。CRISPR-Cas9 基因编辑用于治疗镰状细胞病和 β-地中海贫血,N Engl J Med (2021) Bauer, DE, Orkin SH:血红蛋白转换的惊喜:多功能转录因子 BCL11A 是胎儿血红蛋白的主要抑制因子,Curr Op Gen & Dev (2015)
加利福尼亚州埃尔塞贡多和科罗拉多州科罗拉多斯普林斯——美国太空部队的空间系统司令部 (SSC) 和空间作战司令部 (SpOC) 通过快速反应开拓者 (RRT) 发射执行了加速时间表,以满足特定作战人员的需求。与 SpaceX 合作,猎鹰 9 号火箭于美国东部时间 12 月 16 日晚上 7 点 52 分(太平洋标准时间下午 4 点 52 分)从佛罗里达州布里瓦德县卡纳维拉尔角太空军站 40 号航天发射中心发射了这项国家安全太空发射 (NSSL) 任务,搭载全球定位系统 (GPS) III 太空飞行器 (SV) SV-07。此次任务成功展示了多个太空部队组织的复杂整合工作,从存储中取出现有的 GPS III 卫星,加速整合和运载火箭准备就绪,并快速处理发射。发射的成功证明了双重作战概念。对于 SSC 而言,确保太空进入 (AATS) 通过在不到五个月的时间内执行 NSSL 级发射,成功展示并强调了其与工业界合作的敏捷性,以响应不断变化的国家需求。
马来西亚国家能源公司 (TNB) 昨日在一份声明中表示:“这是马来西亚国家能源公司 (PETRA) 为可再生能源计划 (CBES RE) 跨境电力销售计划下实施的一项举措。” 能源和水资源转型部副部长 Akmal Nasrullah Mohd Nasir 与马来西亚国家能源公司 (PETRA)、能源委员会和 TNB 的高层管理人员一起,在 TNB 孟沙总部的国家负荷调度中心见证了马来西亚和新加坡绿色电力跨境贸易的历史性时刻。据 PETRA 称,TNB 作为一家国家公用事业公司,负责将绿色电力从国家电力供应系统输送到