抽象的结构性马氏体变换实现了各种应用,从高冲程致动,感应到能源有效的磁性制冷和热蛋白网络能量收集。所有这些新兴应用程序都受益于快速转换,但是直到现在尚未探索其速度限制。在这里,我们证明了热弹性马氏体对奥斯丁岩转化的转化可以在10 ns之内完成。我们使用纳米秒激光脉冲加热外延Ni -Mn -GA膜,并使用同步加速器衍射来探测初始温度和过热对转化速率和比率的影响。我们证明,热能的增加可以更快地驱动这种转换。尽管观察到的速度极限为2.5×10 27(JS)1个单位单元格留出足够的空间以进一步加速应用,但我们的分析表明,实际极限将是切换所需的能量。因此,马氏菌的转化遵守与微电子相似的速度限制,如玛格鲁斯 - 左旋蛋白定理所表达的。
* 通讯地址:Chola Elangeswaran,鲁汶天主教大学,机械工程系,Celestijnenlaan 300,3001 鲁汶,比利时。电子邮件:chola.elangeswaran@kuleuven.be URL:www.set.kuleuven.be/am
3D打印,又称增材制造(AM),自1987年以来得到了迅速发展。与传统制造方法相比,3D打印具有提高材料利用率、减少材料浪费等优势。马氏体时效钢具有良好的强度和韧性,且不损失延展性,已用于3D打印技术。选择性激光熔化(SLM)是3D打印方法之一,主要用于金属和合金粉末。本文将选择性激光熔化用于马氏体时效钢。3D打印马氏体时效钢是一种新材料,关于3D打印马氏体时效钢性能的研究仍在进行中。由于腐蚀成本高,耐腐蚀性是马氏体时效钢最重要的性能之一。因此,本论文将重点研究3D打印马氏体时效钢的腐蚀行为。本论文的目的是找到高耐腐蚀性的最佳热处理条件,并找到马氏体时效钢微观结构与腐蚀行为之间的关系。本文使用了几种具有不同热处理条件的马氏体时效钢样品。 SLM、SLM奥氏体化&淬火、SLM时效、常规奥氏体化&淬火、常规时效。此外,还制备了两种溶液,NaOH(pH=11.5)和Na2SO4(pH=6.5)。使用光学显微镜观察微观结构。SLM和常规样品的晶粒尺寸不同,不同热处理条件的样品的晶粒尺寸也不同。使用动电位极化法测量腐蚀行为。与常规样品相比,SLM样品的电流密度低得多,钝化电位和腐蚀速率相似。但由于缺乏进一步的实验,腐蚀行为之间的关系可能受到多种因素的综合影响。
* 通讯地址:Chola Elangeswaran,鲁汶天主教大学,机械工程系,Celestijnenlaan 300, 3001 Leuven,比利时。电子邮箱:chola.elangeswaran@kuleuven.be 网址:www.set.kuleuven.be/am
* 通讯地址:Chola Elangeswaran,鲁汶天主教大学,机械工程系,Celestijnenlaan 300, 3001 Leuven,比利时。电子邮箱:chola.elangeswaran@kuleuven.be 网址:www.set.kuleuven.be/am
* 通讯地址:Chola Elangeswaran,鲁汶天主教大学,机械工程系,Celestijnenlaan 300, 3001 Leuven,比利时。电子邮箱:chola.elangeswaran@kuleuven.be 网址:www.set.kuleuven.be/am
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
Jorge Gil1,A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,C,Omid Emadinia,2,D,D,Ana Reis,1,2和Abíliode耶稣1,2,F Jorge Gil1,A ∗,A * ,C,Omid Emadinia,2,D,Ana Reis,1,2和AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,2,B,B,Rui Amaral,Rui Amaral,1.2,C,Omid Emadinia,2,2,2,d,d,d,d,d,d,d,ana reis,1.2,and and and and and and and and and and emiia,de emia de emia de emiia, 1,2和Abíliode耶稣1,2,F J Orge gi l1,A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,C,Omid Emadinia,2,D,D,Ana Reis,1.2 A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,Omid Emadinia,2,D,Ana Reis,1.2,以及AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,Ricardo seca,ricardo seca,rica seca,b b b b b b b b b b,rui amaral,rui amaral,1.2,1.2,c,c,c,ana ana ana ana and de耶稣我Amaral,1.2,C,Omid Emadinia,2,D,Ana Reis,1,2和AbílioDe耶稣1,2,F J org and Gil1,A ∗,Ricardo Seca,2,B,Rui amaral,Rui amaral,1.2,1.2,1.2,1.2,C,Omidemidia f jorge gil1,a a emriia amar a emar,rica, ,D,Ana Reis,1.2和AbílioDeJesus1,2,F Jorge Gil1,A ∗,Ricardo,2,B,Rui Amaral,C,Omid Emadinia,2,D,D,Ana Reis,Ana Reis,1.2,1.2,1.2,1.2,2,b,b,b,b,rui amaral,1.2 A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,C,Omid Emadinia,2,D,Ana Reis,1.2,以及AbílioDe耶稣1,2,F Jorge Gil1,C,C,Omid Emadinia,2,D,D,D,D,D,D,D,Ana Reis,1,2,1,2,E e耶稣和耶稣基督Amaral,1.2,C,Omid Emadinia,2,D,Ana Reis,1.2,以及AbílioDeJesus1,2,F J Orge Gil1,A ∗,D,Ana Reis,1,2,E和AbílioDe耶稣1,2 ,1.2和AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,B,Rui Amaral,1.2和AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,Ricardo Seca,2,2,2,B,Rui amaral,1.2,c,c,c,omid emadinia and de ana ana ana ana ana ana, Jorge Gil1,A ∗,Ricardo Seca,B,Rui Amaral,1.2,C,Omid Emadinia Gil1,A ∗,Ricardo Seca,2,B,B,Rui Amaral,Rui Amaral,1.2,C,Omid Emadinia,2,2,D,D,D,Ana Reis,Ana Reis,1,2,和Abíliode Jesus1,1,2,和Abíliode Jesus1,2,2,f.
91级钢制在增材制造过程中形成马氏体,而马氏体的回火程度显着影响零件的机械性能。当前,缺乏对91级钢质的回火动力学的定量理解,因此,无法确定重复的热周期对不同加工条件的性能的影响。在这里,我们通过根据文献中可用的回火数据和使用严格测试的热量热和流体流动模型计算出的热循环来确定Johnson Mehl Avrami动力学方程中的恒定项来评估回火动力学。使用神经网络清洁原始回火数据以提高准确性。添加上层时,下层会经历加热和冷却的重复周期。因此,由于马氏体的回火,硬度降低了。相比之下,上层形成的马氏体并未降低到相同的程度,硬度保持较高。因此,零件的硬度随距基板的距离而增加。在不同激光功率下的热输入和扫描速度的变化显着影响回火程度。由于此处使用的方法可以提供对马氏体回火和硬度空间变化的定量理解,因此可以使用它来定制微观结构和可热处理印刷金属部分的硬度。