摘要 本文提出了一种宽带堆叠微带贴片天线结构,采用微带馈电技术实现宽带宽和高增益。所提出的堆叠天线在 C 波段的频率范围为 4GHz 至 10GHz。进行了参数分析,以研究元件间距离对天线性能(方向性、输入阻抗和辐射效率)的影响。结果表明,在全驱动元件的情况下,可以在短距离内实现高方向性。所提出的天线用于广泛的应用,例如卫星通信、气象雷达系统、Wi-Fi 和 ISM 波段的应用。众所周知,C 波段在恶劣天气条件下的表现优于卫星通信的标准 Ku 波段。使用 HFSS 工具分析了天线的参数。关键词:微带贴片天线、堆叠天线、ISM 和 C 波段、卫星应用
Wirebondinghasbeenthemostwidelyusedandflexibleform of interconnecting technology in semiconductor manufacturing [1] .Themechanicalreliabilityofwirebondsinamicroelectronic package depends to a big extent on the formation of intermetallic compounds at the interface, environmental stress cycling of the module, fatigue and bonding process itself.债券过程控制和债券质量监控一直是制造OEM的主要关注点。电线键合是一个复杂的过程,具有许多参数(例如功率输入,粘结压力,粘结时间,阶段温度,传感器配置)。对于这样的制造过程,确定主要因素及其影响对于过程优化很重要。常规传感器组件包括以一端耦合的PZT(铅 - 循环酸 - 二烷基)驱动元件,以及键合工具耦合到传感器的输出端。为了维修/更换需求,该工具在组件上螺钉固定。这是具有“蟹腿”键合工具的三维结构。螺钉固定条件(工具上的扭矩值)可能会影响包装实践中的传感器性能,但是很少有有关此
通常,具有力反馈的操纵杆包含两个自由度,足以满足多种用途。然而,在某些情况下,也具有力反馈的第三自由度可用作输入,例如,当需要控制具有四个独立轮子的移动机器人时。这种类型的机器人是 DLR 开发的:Robomobil。三自由度操纵杆将取代传统的驱动元件(方向盘、制动器和加速器),并使驾驶员能够独立地指挥纵向、横向和旋转运动。该系统的优点有很多,例如:将驾驶控制集成在单个设备中、独立指挥运动的可能性或方向兼容等。该项目的目的是研究什么类型的输入适合第三自由度,以及人类前臂运动学的耦合如何影响三自由度操纵杆的控制。考虑到这一点,进行了一项用户研究(一个具有七个自由度的机器人模拟操纵杆的不同模式,并使用触觉设备 Spacemouse 检查是否适合分离任何操纵杆的程度)两个设备的自由)。最后针对第三次GR的实现进行了机械设计
基于 CRISPR 的归巢基因驱动可以设计为破坏必需基因,同时偏向其自身的遗传,从而在实验室中抑制蚊子种群。这类基因驱动依赖于 CRISPR-Cas9 对目标序列的切割和从同源染色体中复制(“归巢”)基因驱动元件。然而,预计对切割有抗性但仍保持必需基因功能的靶位突变将被强烈选择。针对不易容忍突变的功能受限区域应该会降低抗性的概率。序列水平的进化保守性通常是功能约束的可靠指标,尽管一个保守序列与另一个保守序列之间实际的潜在约束水平可能有很大差异。在这里,我们在疟疾媒介冈比亚按蚊中生成了一种新型成虫致死基因驱动 (ALGD),其靶向蚊子发育过程中所需的单倍体必需基因 (AGAP029113) 中超保守的靶位,该基因满足种群抑制基因驱动靶位的许多标准。然后,我们设计了一种选择方案,以实验性地评估在其靶位产生和随后选择基因驱动抗性突变的可能性。我们在笼养种群中模拟了基因驱动接近固定的情景,其中对抗性的选择预计最强。对目标基因座的连续采样显示选择了单个、恢复性的、符合框架的核苷酸替换。我们的研究结果表明,仅靠超保守并不能预测对靶位抗性具有抗性的位点。我们的体内抗性评估策略有助于验证候选基因驱动目标的抗性恢复力,并有助于改善对野外种群中基因驱动入侵动态的预测。
遗传害虫管理策略在 20 世纪初被提出,并于 20 世纪中期开始实施,其中昆虫不育技术 (SIT) 是其中的佼佼者 (130、131、202)。在 SIT 中,不育雄性被释放出来与野生雌性交配,随着时间推移,这种技术频繁大规模释放,可以抑制甚至消灭种群。该领域的早期工作依赖于辐射来产生不育突变 (17、131、207)。大规模实施该技术取得了巨大成功,彻底消灭了北美大部分地区的新大陆螺旋蝇 (131),并抑制了其他一些物种 (83、179)。然而,遗传和其他技术挑战阻碍了抑制某些物种的尝试取得成功。在开展这项工作的同时,人们探索了许多其他控制方法,这些方法基于转基因时代之前对害虫遗传学的操作(例如易位和倒位),但总体上并没有取得很大的成功(100)。人们开始思考用于种群管理的遗传技术,特别是那些旨在自我维持的技术,这种思考始于 50 多年前(64, 201),其灵感来自于生命各个领域中越来越多的自然发生的自私遗传元素 [以下称为基因驱动 (120)] 的行为。许多这样的基因驱动是在遗传学领域早期发现的,通常是由于意外的突变率、性别比例偏差或特定基因型的死亡率而偶然发现的。这些驱动有利于它们的传播,而牺牲了基因组中的其他基因。这种行为可能导致这些驱动相对于相应的染色体对应物扩散,即使它们的存在会给携带者带来适应度成本(即降低整个种群的适应度)(78、95、104、178、226)。自然产生的基因驱动在形式和机制上千差万别,包括性别比例扭曲元件、减数分裂驱动元件和毒素-解毒剂系统(3、66、67、104、117、148)、转座元件(157、178、188)、可遗传微生物(62、80、225)和归巢内切酶(37、38)。这些自然基因驱动的潜在机制启发了合成基因驱动系统的创建(120)。