摘要:近年来,研究的重点是生成机制来评估受试者在执行各种需要高度集中注意力的活动(例如驾驶车辆)时的认知工作量水平。这些机制已经实现了多种分析认知工作量的工具,而脑电图 (EEG) 信号由于其高精度而最常使用。然而,实现 EEG 信号的主要挑战之一是找到适合识别认知状态的信息。在这里,我们提出了一种基于机器学习技术的使用 EEG 信号信息进行模式识别的新特征选择模型,称为 GALoRIS。GALoRIS 结合遗传算法和逻辑回归来创建一个新的适应度函数,该函数识别和选择有助于识别高和低认知工作量的关键 EEG 特征,并构建一个能够优化模型预测过程的新数据集。我们发现,GALoRIS 使用从多个 EEG 信号中提取的信息来识别与受试者驾驶车辆时的高和低认知工作负荷相关的数据,将原始数据集减少了 50% 以上,并最大限度地提高了模型的预测能力,实现了 90% 以上的准确率。
在弯路上驾驶时执行次要任务(或与驾驶无关的任务)可能存在风险且不安全。本研究的目的是探索是否可以使用多种眼球运动测量方法来评估弯路和次要任务情况下的驾驶安全性。除了典型的静态视觉测量(例如扫视频率和持续时间)之外,我们还采用了基于马尔可夫的转换算法(转换/平稳概率、熵)来量化驾驶员的动态眼球运动模式。这些算法的评估基于一项实验(Jeong & Liu,2019),该实验涉及多种道路曲率和刺激-反应次要任务类型。在较陡的弯道中,驾驶员更有可能长时间扫描少数感兴趣的区域。在实验中,不太陡的弯道中总的低头扫视时间更长,但从长远来看,较陡的弯道中低头扫视的概率更高。感兴趣区域之间的可靠转换次数因次要任务类型而异。视觉要求不高的任务的视觉扫描模式与视觉要求高的任务一样随机。与典型的静态测量相比,基于马尔可夫的动态眼球运动测量提供了更好的洞察力,可以更好地了解驾驶员的潜在心理过程和扫描策略。所提出的方法和结果可用于车载系统设计和进一步分析交通中的视觉扫描模式
在弯路上驾驶时执行次要任务(或与驾驶无关的任务)可能存在风险且不安全。本研究的目的是探索是否可以使用多种眼球运动测量方法来评估弯路和次要任务情况下的驾驶安全性。除了典型的静态视觉测量(例如扫视频率和持续时间)之外,我们还采用了基于马尔可夫的转换算法(转换/平稳概率、熵)来量化驾驶员的动态眼球运动模式。这些算法的评估基于一项实验(Jeong & Liu,2019)的数据,该实验涉及多种道路曲率和刺激-反应次要任务类型。在较陡的弯道中,驾驶员更有可能长时间扫描少数感兴趣的区域。在实验中,不太陡的弯道中总的低头扫视时间更长,但从长远来看,较陡的弯道中低头扫视的概率更高。感兴趣区域之间的可靠转换次数因次要任务类型而异。视觉要求不高的任务的视觉扫描模式与视觉要求高的任务一样随机。与典型的静态测量相比,基于马尔可夫的动态眼球运动测量可以更好地了解驾驶员的潜在心理过程和扫描策略。所提出的方法和结果可用于车载系统设计和进一步分析交通领域的视觉扫描模式。
摘要 这项工作旨在组织建议,以便在人类监督自动化驾驶期间保持人们的参与度,鼓励安全和可接受地引入自动驾驶系统。首先,利用人为因素、人体工程学和心理学理论的启发式知识来提出解决人类监督控制持续注意力问题的解决方案领域。绘制了驾驶和非驾驶研究示例以证实解决方案领域。汽车制造商可以(1)完全避免这种监督角色,(2)以客观的方式减少它或(3)改变其主观体验,(4)利用条件学习原理,例如游戏化和/或选择/训练技术,(5)支持内部驾驶员认知过程和心理模型和/或(6)利用有关驾驶员、驾驶任务和驾驶环境之间关系的外部信息。其次,对有影响力的人机交互研究进行了跨领域文献调查,以了解如何在监督控制中保持参与度/注意力。独立评估者对研究建议的分类表明,解决方案领域(通过数字主题代码)可靠地应用。 大约 70% 或更多的研究涉及领域 (5) 和 (6),大约 50% 的研究涉及领域 (2) 和 (4),而不到 20% 和 5% 的研究涉及领域 (3) 和 (1)。 本贡献提供了一个指导组织
摘要。这项工作旨在组织建议,以在人类监督驾驶自动化期间保持人们的参与,鼓励安全和可接受地引入自动驾驶系统。首先,使用人为因素、人体工程学和心理学理论的启发式知识来提出解决人类监督控制持续注意力问题的解决方案领域。绘制了驾驶和非驾驶研究示例来证实解决方案领域。汽车制造商可以 (1) 完全避免这种监督角色,(2) 以客观的方式减少它或 (3) 改变其主观体验,(4) 利用条件学习原理,例如游戏化和/或 20 选择/训练技术,(5) 支持内部驾驶员认知过程和 21 心理模型和/或 (6) 利用有关驾驶员、驾驶任务和驾驶环境之间关系的外部信息。 23 其次,对有影响力的人机交互研究进行了跨领域文献调查,以了解如何在监督控制中保持参与度/注意力。从独立评估者对研究建议的分类中发现,解决方案领域(通过数字主题代码)可靠地应用。约 70% 或更多的研究中涉及领域 (5) 和 (6),约 50% 的研究中涉及领域 (2) 和 (4),而领域 (3) 和 (1) 分别不到约 20% 和 5%。pres
本文重点研究了驾驶员在乡村双车道公路上行驶时的工作负荷,这些公路的交通流量各不相同。研究的目的是研究一个可以代表驾驶努力的参数,该参数对干扰正常驾驶活动的外部因素非常敏感。为了解决这个问题,作者使用了一种特殊的仪器车辆来监测驾驶员的一些生理参数(如眼球运动和皮肤电化学电阻),并将其值与道路环境联系起来。结果非常有趣,并证实了只有当工作负荷与外部环境以及道路几何形状、交通、能见度等相关时,了解工作负荷才有助于提高道路安全。只有这样,道路管理人员才能推断出适当的信息,以规划和指导准确、高效的升级工作操作。© 2017 作者。由 Elsevier Ltd. 出版。同行评审由第 10 届国际科学会议 Transbaltica 2017:交通科学与技术组委会负责。
平视显示器 (HUD) 最初在航空业中用作飞行员的综合信息显示器,然后由于其对飞行员的普遍认可的好处而被应用于汽车行业。随着智能可穿戴设备和移动设备(如 Google Glass 和 Garmin HUD)的蓬勃发展,HUD 可能会越来越受到飞行员和驾驶员的欢迎,因为它可以降低成本,并且可以灵活地开发具有不同界面和交互的新应用程序。然而,尽管 HUD 在航空业中具有诸多好处,但在将 HUD 应用于车辆和飞机之前,还需要考虑和研究更多的人为因素、人体工程学和心理因素 [1]。这些新的信息娱乐或信息设备将如何影响驾驶和驾驶表现?HUD 是否会像对飞行员有益一样为驾驶员带来声称的好处,还是实际上会造成更多操作员分心的来源?