1.3 适用性 本文件适用于涉及将聚合物工艺(例如粘合、铆接、保形涂层、封装)应用于电气/电子元件的制造商,包括印刷电路板组件、光纤和金属电缆和线束组件、机械部件(例如镀锡底盘、支架、紧固件)及其元件,以及合同中引用的任何地方。用户负责确定是否需要使用聚合物材料来确保硬件的性能或可靠性。
a) PAN 前驱体配方(原料成分及配比),b) PAN 前驱体制造工艺、设备、生产线或场地,c) PAN 前驱体验收要求,d) 碳纤维丝束加工参数(如温度、速度),e) 碳纤维丝束制造设备、生产线或场地,f) 碳纤维丝束验收要求,g) 碳纤维丝束验收试验方法,h) 碳纤维丝束验收抽样计划,i) 碳纤维丝束表面处理方法及水平,j) 碳纤维丝束上浆配方及上浆水平,以及 k) 碳纤维丝束上浆应用及干燥方法,包括设备。如需对上述控制因素进行任何变更,碳纤维丝束产品制造商应根据 NRP 101 预浸料工艺控制文件(PCD)准备及维护指南,通过预浸料制造商向 NCAMP 重新提交审批。NRP 102 聚丙烯腈基碳纤维工艺控制文件(PCD)准备及维护指南可作为参考。在收到重新批准通知(通常以签署的预先变更通知 (ACN) 的形式)之前,不得纳入变更。2.1.2 矩阵:
英国气候变化法案设定的目标是到 2050 年实现温室气体零排放,这对所有参与者来说都是一项重大的技术挑战。因此,输配电网络正在发生变化,并适应各种电压等级的发电和用电技术。未来电网将以风能和太阳能发电为主,并由电能储存 (EES) 提供支持,尤其是电池储能系统 (BESS),同时还有一些剩余的水电、核电和开式循环燃气轮机 (OCGT) 同步发电机组,这些发电机组由绿色能源驱动。本文讨论了 BESS 的优势,它已被证明是最有前途的 EES 技术,可以克服可再生能源系统 (RES) 整合的若干技术挑战。本文概述了 BESS 技术提供的服务,并介绍了所采用的电气控制策略。BESS 在连接到电网之前需要遵守英国的 BESS 电网代码验收要求。本文介绍了静态和时域 BESS 研究评估。分析了风电场和 BESS 混合系统的模拟结果,并根据电网规范动态合规要求提出了建议。
前言 本 NASA 可靠性中心建筑和设备验收指南旨在为与新建、维修或修复项目相关的设备提供验收标准指南。它可作为设计工程师、项目和计划经理、施工经理和检查员、质量控制人员和 NASA 质量保证人员的技术参考,帮助定义所需的验收要求。 为了支持价值和成本贯穿设备整个使用寿命的“前瞻性”愿景,NASA 采用了可靠性中心维护 (RCM) 流程。RCM 不仅在识别设备可能发生故障的位置方面取得了巨大成功,而且在识别可用于防止这些故障并减轻相关风险的行动和技术方面也取得了巨大成功。这些技术通常称为预测性测试和检查 (PT&I),是 RCM 理念不可或缺的要素。这些相同的技术可以在验收过程中同样成功地用于识别和消除潜在的制造和安装缺陷。具有此类缺陷的设备将严重损害任务成功、人员安全以及总体运营和维护成本。本指南提倡将 RCM 流程作为制定验收标准的基础。它包含 RCM 方法的描述,还包含可用于验收测试的技术的描述
MIL-DTL-32505 2014 年 11 月 13 日 详细规格 装甲板,铝合金,7017 可焊接和 7020 贴花 本规格经国防部各部门和机构批准使用 1. 范围 1.1 范围。本规格涵盖两种锻造铝装甲板合金,用于焊接和非焊接应用,公称厚度为 0.500 至 4.000 英寸(见 6.2)。锻造铝合金 AA7017 装甲的可焊性仅适用于这些厚度的 I 级装甲:1.000” 和 1.500”。 I 类 (AA7017) 材料可直接替代 MIL-DTL-46063H 修订 2 材料,即 AA7039,用于新设计,如果指定(见 6.2),用于旧设计或维修/更换。在本规范发布之前,尚未确定 II 类装甲的锻造铝合金 AA7020 装甲的验收要求和可焊性。当前测试正在进行中,完成后将修订本规范以包含 II 类 (AA7020) 装甲的所有相关要求和条件。II 类铝合金 AA7020 在本规范中列为占位符,直到上述测试程序完成。表格将填写 AA7020 要求;但是,目前这些值将替换为“TBD”(待定)。1.2 可焊性。本规范涵盖的材料已被证明可焊接到自身和其他可焊合金上(见 6.4)。 1.3 类
前言 本 NASA 可靠性中心建筑和设备验收指南旨在为与新建、维修或修复项目相关的设备提供验收标准指南。它可作为设计工程师、项目和计划经理、施工经理和检查员、质量控制人员和 NASA 质量保证人员的技术参考,帮助定义所需的验收要求。 为了支持价值和成本贯穿设备整个使用寿命的“前瞻性”愿景,NASA 采用了可靠性中心维护 (RCM) 流程。RCM 不仅在识别设备故障可能发生的位置方面取得了巨大成功,而且在识别可用于防止这些故障并减轻相关风险的行动和技术方面也取得了巨大成功。这些技术通常称为预测性测试和检查 (PT&I),是 RCM 理念不可或缺的要素。这些相同的技术可以在验收过程中同样成功地用于识别和消除潜在的制造和安装缺陷。具有此类缺陷的设备将严重损害任务成功、人员安全以及总体运营和维护成本。本指南提倡将 RCM 流程作为制定验收标准的基础。它包含 RCM 方法的描述,还包含可用于验收测试的技术的描述。预期结果是高质量和安全的安装、减少过早故障和降低生命周期成本。本指南不会,也不打算,解决行业中广泛实施的传统和全面建筑调试的所有方面。对于这些,鼓励用户参考全面而详细的调试指南、标准和标准,例如美国采暖、制冷和空调工程师协会 (ASHRAE) 发布的指南、标准和标准。本指南补充了现有的调试标准,但不会取代这些标准。此处包含的实践和标准应与传统工艺参数结合使用,以便在承包商离开现场之前检查、测试和验收设施和设备安装。本指南中包含的设备示例并不包括 NASA 的所有设备,本指南也不打算全面解决所有不同品牌、型号和尺寸的设备。本文所含示例是常见设备的典型示例,旨在供 NASA 人员复制、模仿或扩展,以达到其明确而独特的目的。本指南是对 2001 年 3 月 NASA 可靠性中心建筑和设备验收指南的更新。它包含 46 个额外的通用设备规格以及词汇表和附录的更新。规格:此更新中包含了完整的参考资料。
前言 本 NASA 可靠性中心建筑和设备验收指南旨在为与新建、维修或修复项目相关的设备提供验收标准指南。它可作为设计工程师、项目和计划经理、施工经理和检查员、质量控制人员和 NASA 质量保证人员的技术参考,帮助定义所需的验收要求。 为了支持价值和成本贯穿设备整个使用寿命的“前瞻性”愿景,NASA 采用了可靠性中心维护 (RCM) 流程。RCM 不仅在识别设备故障可能发生的位置方面取得了巨大成功,而且在识别可用于防止这些故障并减轻相关风险的行动和技术方面也取得了巨大成功。这些技术通常称为预测性测试和检查 (PT&I),是 RCM 理念不可或缺的要素。这些相同的技术可以在验收过程中同样成功地用于识别和消除潜在的制造和安装缺陷。具有此类缺陷的设备将严重损害任务成功、人员安全以及总体运营和维护成本。本指南提倡将 RCM 流程作为制定验收标准的基础。它包含 RCM 方法的描述,还包含可用于验收测试的技术的描述。预期结果是高质量和安全的安装、减少过早故障和降低生命周期成本。本指南不会,也不打算,解决行业中广泛实施的传统和全面建筑调试的所有方面。对于这些,鼓励用户参考全面而详细的调试指南、标准和标准,例如美国采暖、制冷和空调工程师协会 (ASHRAE) 发布的指南、标准和标准。本指南补充了现有的调试标准,但不会取代这些标准。此处包含的实践和标准应与传统工艺参数结合使用,以便在承包商离开现场之前检查、测试和验收设施和设备安装。本指南中包含的设备示例并不包括 NASA 的所有设备,本指南也不打算全面解决所有不同品牌、型号和尺寸的设备。本文所含示例是常见设备的典型示例,旨在供 NASA 人员复制、模仿或扩展,以达到其明确而独特的目的。本指南是对 2001 年 3 月 NASA 可靠性中心建筑和设备验收指南的更新。它包含 46 个额外的通用设备规格以及词汇表和附录的更新。规格:此更新中包含了完整的参考资料。
前言 本 NASA 可靠性中心建筑和设备验收指南旨在为与新建、维修或修复项目相关的设备提供验收标准指南。它可作为设计工程师、项目和计划经理、施工经理和检查员、质量控制人员和 NASA 质量保证人员的技术参考,帮助定义所需的验收要求。 为了支持价值和成本贯穿设备整个使用寿命的“前瞻性”愿景,NASA 采用了可靠性中心维护 (RCM) 流程。RCM 不仅在识别设备故障可能发生的位置方面取得了巨大成功,而且在识别可用于防止这些故障并减轻相关风险的行动和技术方面也取得了巨大成功。这些技术通常称为预测性测试和检查 (PT&I),是 RCM 理念不可或缺的要素。这些相同的技术可以在验收过程中同样成功地用于识别和消除潜在的制造和安装缺陷。具有此类缺陷的设备将严重损害任务成功、人员安全以及总体运营和维护成本。本指南提倡将 RCM 流程作为制定验收标准的基础。它包含 RCM 方法的描述,还包含可用于验收测试的技术的描述。预期结果是高质量和安全的安装、减少过早故障和降低生命周期成本。本指南不会,也不打算,解决行业中广泛实施的传统和全面建筑调试的所有方面。对于这些,鼓励用户参考全面而详细的调试指南、标准和标准,例如美国采暖、制冷和空调工程师协会 (ASHRAE) 发布的指南、标准和标准。本指南补充了现有的调试标准,但不会取代这些标准。此处包含的实践和标准应与传统工艺参数结合使用,以便在承包商离开现场之前检查、测试和验收设施和设备安装。本指南中包含的设备示例并不包括 NASA 的所有设备,本指南也不打算全面解决所有不同品牌、型号和尺寸的设备。本文所含示例是常见设备的典型示例,旨在供 NASA 人员复制、模仿或扩展,以达到其明确而独特的目的。本指南是对 2001 年 3 月 NASA 可靠性中心建筑和设备验收指南的更新。它包含 46 个额外的通用设备规格以及词汇表和附录的更新。规格:此更新中包含了完整的参考资料。
前言 本 NASA 可靠性中心建筑和设备验收指南旨在为与新建、维修或修复项目相关的设备提供验收标准指南。它可作为设计工程师、项目和计划经理、施工经理和检查员、质量控制人员和 NASA 质量保证人员的技术参考,帮助定义所需的验收要求。 为了支持价值和成本贯穿设备整个使用寿命的“前瞻性”愿景,NASA 采用了可靠性中心维护 (RCM) 流程。RCM 不仅在识别设备故障可能发生的位置方面取得了巨大成功,而且在识别可用于防止这些故障并减轻相关风险的行动和技术方面也取得了巨大成功。这些技术通常称为预测性测试和检查 (PT&I),是 RCM 理念不可或缺的要素。这些相同的技术可以在验收过程中同样成功地用于识别和消除潜在的制造和安装缺陷。具有此类缺陷的设备将严重损害任务成功、人员安全以及总体运营和维护成本。本指南提倡将 RCM 流程作为制定验收标准的基础。它包含 RCM 方法的描述,还包含可用于验收测试的技术的描述。预期结果是高质量和安全的安装、减少过早故障和降低生命周期成本。本指南不会,也不打算,解决行业中广泛实施的传统和全面建筑调试的所有方面。对于这些,鼓励用户参考全面而详细的调试指南、标准和标准,例如美国采暖、制冷和空调工程师协会 (ASHRAE) 发布的指南、标准和标准。本指南补充了现有的调试标准,但不会取代这些标准。此处包含的实践和标准应与传统工艺参数结合使用,以便在承包商离开现场之前检查、测试和验收设施和设备安装。本指南中包含的设备示例并不包括 NASA 的所有设备,本指南也不打算全面解决所有不同品牌、型号和尺寸的设备。本文所含示例是常见设备的典型示例,旨在供 NASA 人员复制、模仿或扩展,以达到其明确而独特的目的。本指南是对 2001 年 3 月 NASA 可靠性中心建筑和设备验收指南的更新。它包含 46 个额外的通用设备规格以及词汇表和附录的更新。规格:此更新中包含了完整的参考资料。