摘要。神经胶质瘤是最常见的原发性脑恶性肿瘤,具有不同程度的侵袭性、不同的预后和各种异质性组织学亚区,即肿瘤周围水肿、坏死核心、增强和非增强肿瘤核心。虽然使用多模态 MRI 可以轻松检测脑肿瘤,但准确的肿瘤分割是一项具有挑战性的任务。因此,利用 BraTS Challenge 2020 提供的数据,我们提出了一种 3D 体积到体积生成对抗网络来分割脑肿瘤。该模型名为 Vox2Vox,它从多通道 3D MRI 图像中生成逼真的分割输出,分割出整体、核心和增强肿瘤,骰子得分平均值分别为 87.20%、81.14% 和 78.67%,BraTS 测试集的 Hausdorff 距离 95 百分位数平均值分别为 6.44mm、24.36mm 和 18.95mm,这些结果均通过 10 倍交叉验证获得。代码可在 https://github.com/mdciri/Vox2Vox 上找到。
摘要:多模态 MRI 的自动脑肿瘤分割在辅助胶质母细胞瘤和下脑胶质瘤的诊断、治疗和手术方面发挥着重要作用。在本文中,我们提出应用 AWS SageMaker 框架中实现的几种深度学习技术。不同的 CNN 架构经过调整和微调,以达到脑肿瘤分割的目的。对实验进行评估和分析,以获得所创建模型的最佳参数。所选架构在公开的 BraTS 2017-2020 数据集上进行训练。分割区分了背景、健康组织、整个肿瘤、水肿、增强肿瘤和坏死。此外,还提出了一种随机搜索参数优化的方法,以进一步改进获得的架构。最后,我们还计算了由所述六个模型的加权平均值创建的集成模型的检测结果。集成的目标是改善肿瘤组织边界的分割。我们的结果与 BraTS 2020 竞赛和排行榜进行了比较,根据骰子分数的排名,我们的结果位列前 25%。
尽管已经提出了许多分割方法,但可以进一步提高分割结果的准确性。随后,本研究试图提供有关称为感兴趣区域(ROI)的大小,初始位置和形状(ROI)的非常重要的特性,以启动分割过程。MRI由特定人而不是一个图像的一系列图像(MRI切片)组成。我们的方法根据肿瘤大小,初始位置和形状选择其中的最佳图像,以避免部分体积效应。测试我们方法的所选算法是主动轮廓和OTSU阈值算法。在本研究中使用Brats标准数据集进行了几项实验,该数据集由100个样本组成。这些实验由65名患者的MRI切片组成。使用骰子,jaccard和BF分数通过相似系数作为标准度量来评估所提出的方法。结果表明,当在三个不同的相似性系数中测试时,主动轮廓算法具有较高的分割精度。此外,两种算法的实现结果验证了建议的方法选择MRI样品最佳ROI的能力。
脑肿瘤检测是医学图像分析中的一项重要任务。卷积神经网络 (CNN) 在各种计算机视觉任务中表现出色,包括脑肿瘤检测。然而,CNN 的性能在很大程度上取决于大量多样化训练数据的可用性。在医学成像中,由于道德和实际问题,获取大量数据集通常具有挑战性。数据增强是一种广泛使用的技术,它通过从现有数据集生成额外的训练样本来克服这一限制。在本研究论文中,我们使用深度学习方法研究了数据增强对脑肿瘤检测的影响。我们使用 BraTS 2019 数据集比较了基于 CNN 的模型在增强和非增强数据上训练的性能。实验结果表明,数据增强显著提高了模型的性能,在肿瘤检测中实现了更高的准确度、灵敏度、特异性和骰子系数。我们的研究结果表明,数据增强是一种有效的技术,可以提高基于 CNN 的模型在医学图像分析任务中的性能,特别是在没有大量多样化数据集的情况下。
摘要胃肠癌的发生率仍然很高,尤其是在中国,强调了准确的预后评估和有效治疗策略的重要性。研究表明,腹部肌肉与脂肪组织组成与患者结局之间的相关性很强。但是,分析腹部组织组成的现有手动方法是耗时且昂贵的,限制了临床研究的可伸缩性。为了应对这些挑战,我们开发了一种AI驱动的工具,用于自动分析AB-DOMINAL CT扫描,以有效地识别和分割脂肪,皮下脂肪和内脏脂肪。我们的工具集成了多视图本地化模型和基于高精度的2D NNUNET分割模型,证明了局部iZation精度为90%,骰子得分系数为0.967,用于分割。此外,它具有交互式界面,使临床医生可以完善分割结果,从而有效地确保高质量的结果。我们的工具提供了一种标准化的方法,可有效提取关键的腹部组织,有可能增强胃肠道癌的管理和治疗。代码可在https://github.com/nanxinyu/ai-tool4abdominal-seg.git上找到。
摘要:大脑是人类控制和交流的中心。因此,保护它并为其提供理想条件非常重要。脑癌仍然是世界上死亡的主要原因之一,并且检测恶性脑肿瘤是医疗图像分割的优先事项。与正常组织相比,脑肿瘤分割任务旨在鉴定属于异常区域的像素。深度学习近年来已经解决了解决这个问题的力量,尤其是类似U-Net的架构。在本文中,我们提出了一个有效的U-NET架构,其中包含三个不同的编码器:VGG-19,Resnet50和MobilenetV2。这是基于转移学习,然后是应用于每个编码器的双向特征金字塔网络,以获得更多的空间相关特征。然后,我们融合了从每个网络的输出中提取的特征图,并通过注意机制将它们合并到我们的解码器中。在Brats 2020数据集上评估了该方法,以分割不同类型的肿瘤,结果在骰子相似性方面表现出良好的性能,整个肿瘤,核心肿瘤和增强肿瘤的系数为0.8741、0.8069和0.7033。
摘要。戒指签名允许组的成员(称为RING)在组中匿名签署消息,该消息在签名时被选为临时(成员以前不需要进行交互)。在本文中,我们提出了一个戒指签名的物理版本。我们的签名基于单一的签名,这是许多真实加密环签名中使用的方法。它由包含锁定的硬币的盒子组成,这些硬币只能由特定组成员打开。要签署一条消息,小组成员摇晃组的其他成员的盒子,以使硬币处于随机状态(“头”或“尾巴”,对应于BITS 0和1),并打开其盒子以排列硬币,以使其与他们希望签名的消息相对应。我们提出了一个可以与硬币一起使用的原型,也可以与骰子一起用于较大(非二进制)字母的消息。我们建议该系统可用于以有趣的方式向公众解释环号。最后,我们根据真正的加密安全证明对签名的安全性进行半正式分析。
遥感图像分类在各种领域至关重要,包括农业,城市规划和环境监测。但是,有限的标记数据和缺失的像素对实现准确的分类构成了挑战。在这项研究中,我们提出了一个综合框架,该框架使用潜在扩散模型和基于强化学习的基于基于学习的缺失像素插补来整合数据,以增强深度学习模型的分类性能。该框架由三层组成:数据增强,缺少像素的插补以及使用修改后的VGG16体系结构进行分类。基准数据集上的广泛实验证明了我们的框架的重大影响,通过显着提高分类准确性和鲁棒性,超过了最新技术。结果突出了我们的增强和归纳技术的有效性,分别达到97.56%,97.34%和97.34%的骰子得分,准确性和召回指标。我们提出的框架为准确的遥感图像分类提供了一个宝贵的解决方案,解决了有限数据和缺失像素的挑战,并且在各个域中具有广泛的应用程序。关键字:VGG 16,卷积神经网络,扩散模型,遥感,卫星图像。
脑肿瘤是最常见的死亡原因之一,已被学者们在护理和预防等研究领域广泛研究。尽管对脑肿瘤分割进行了各种实证研究,但仍需要进一步研究。这一事实在脑肿瘤检测的自动方法中更需要。在本研究中,提出了一种基于超像素和快速原始对偶 (PD) 算法提高脑肿瘤分割精度的新方法。所提出的方法在 BRATS2012 数据集的 Flair-MRI 成像中检测脑肿瘤组织。该方法使用超像素算法检测肿瘤的主要边界,并使用马尔可夫随机场优化中的快速 PD 改善脑肿瘤边界。然后,使用后处理过程删除白色大脑区域。最后,采用活动轮廓算法显示肿瘤区域。对所提出的方法进行了不同的实验,并使用骰子相似度度量、准确度和 F 度量等定性和定量标准进行评估。得到的结果证明了所提方法的有效性,准确率和灵敏度分别达到86.59%和88.57%,F1-Measure为86.37。