随着 LHC 加速器的建成,高能物理电子学开启了新的篇章。这种高亮度强子对撞机在加速质子迎头碰撞点附近建造的探测器系统中产生了前所未有的辐射背景,这对电子设备的可靠功能尤其不利。例如,表 1 描述了 LHC 两个通用探测器系统之一(ATLAS)的辐射背景,图 1 显示了另一个(CMS)的横向视图,以说明不同专用探测器层的位置。90 年代初,人们已经清楚地认识到,跟踪器的电子设备需要具有前所未有的抗辐射能力,而 HEP 社区必须获得有关电子设备和电路中辐射效应的新能力。随着高亮度 LHC 升级的批准,辐射背景增加了 10 倍,事情变得更具挑战性。
[特点] 1) 高开口率、高亮度和低功耗。 2) 图像鲜艳且对比度高。 3) 体积小、外形纤薄。 4) SXGA 分辨率(1024 垂直 x 1280 水平像素阵列)。 5) LVDS 接口。 6) PSWG 类型。
2.亮度影响:当前 Pixel 探测器的峰值亮度设计为 1 × 10 34 cm − 2 s − 1 。预计在 2020 年之后,高亮度 LHC (HL-LHC) 完工之前,亮度至少会达到该水平的两倍。高亮度会增加事件堆积,从而导致高占用率,从而导致读出效率低下。读出效率低下,特别是在较高亮度下,对 B 层的影响将大于其他层,从而限制 b 标记效率。事件堆积的存在要求在测量轨迹时具有冗余度,以便控制由高堆积背景事件中的簇随机组合而产生的伪造率。添加占用率相对较低的 IBL 层有助于在面对亮度效应时保持跟踪性能。
• EBBM 透镜系统使 LED 能够为开放式地板和货架过道提供优化的照明,光度分布为 50 度和 120 度。 • 使用高亮度 LED,典型 5000K CCT 下 CRI 为 70 • LM-79 测试和报告根据 IESNA 标准执行。
第 2 章 安装 章节目标. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 高亮度显示屏的室外安装. . . . . . . . . . . 32 所需工具. . . . . . . . . . . . . . . . . . 34 间隙. . . . . . . . . . . . . . . . . . . . . . . . . . 34 开口尺寸. . . . . . . . . . . . . . . . . . 34 将 400 或 600 终端安装在面板中. . . . . . . . . . . . . . 35 将 700 至 1500 终端安装在面板中. . . . . . . . . . . . . . 37 产品尺寸. ...
先进技术 – 增强型高亮度 HUD 显示器提供宽视野 (FOV),能够显示带有叠加符号(光栅上的笔划)的高分辨率传感器图像。该系列中的系统采用创新的数字图像源,可提高可靠性。Elbit Systems 的 LPHUD 系列既可以与传统的模拟偏转接口连接,也可以与现代高速数字总线(例如 ARINC-818)连接。该系列与 NVG 设备完全兼容。
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
研究所、实验室和大学。应确定和利用不同科学领域和行业需求之间的协同作用,以提高开发过程的效率,并增加更多技术转让的机会,造福整个社会。[...社区应该制定一个全球探测器研发路线图,该路线图应用于支持欧洲和国家层面的提案。• 成功完成高亮度 LHC 必须继续成为重点• 更新 2026 年,并在 2025 年春季之前提交输入提案
摘要 利用BBO非线性晶体中的I型SPDC过程,我们产生了接近于最大纠缠贝尔态的偏振纠缠态,对于HV(DA)基,其高可见度(高亮度)为98.50±1.33%(87.71±4.45%)。作为非局部现实主义测试,我们计算了CHSH版本的贝尔不等式,发现它强烈违反经典物理或任何隐变量理论,S = 2.71±0.10。通过测量SPDC过程中的符合计数率,我们获得单光子探测器的量子效率约为(25.5±3.4)%,这与制造商的测量结果一致。正如预期的那样,我们验证了CC率与输入CW激光的泵浦功率的线性依赖关系,这可能有助于找到有效的二阶磁化率晶体。利用量子比特测量理论,包括基于 16 个偏振测量的线性集合的量子态断层重建,以及基于数值优化的最大似然技术,我们计算了物理非负定密度矩阵,这意味着准备状态的不可分离性和纠缠。通过最大似然密度算子,我们精确计算了纠缠度量,例如并发、形成纠缠、纠缠、对数负性,以及不同的纠缠熵,例如线性熵、冯诺依曼熵和 Renyi 2 熵。最后,这种高亮度和低速率纠缠光子源可用于实验室中的短距离量子测量。