特性与优势 • 高图像质量 – 高对比度和宽色域可实现生动的图像 – 电影般的图像:高填充系数 (>90%) – 分辨率选项从 nHD (640 x 360) 到 4K • 灵活性和可扩展性 – 短焦和超短焦光学器件可在短距离内实现大图像 – 几乎任何表面都可以成为显示器 – 可集成紧凑型光学引擎,而不会影响产品尺寸和美观度 • 高光学效率 – 低功耗、高亮度显示器 – 所需的热管理最少,包括高性能无风扇设计
- CLIC阻尼环区域协调员(自2007年以来) - CLIC-ILC合作工作组的联合主席(2008-2013) - 欧盟Tiara WP6的协调员SLS垂直垂直发射率(2011-2014)的协调员(2011- 2014) - 低廉的协调员 - domecornitiator-domecornitiation-domecorter-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-domesition-card222222222 2 Card 2 Card222222 2戒指具有Aries的超低散发(规则)(2017-2021) - 在高亮度同步仪中I-Fips of I-FAST的WP源(自2021年以来)(自2021年以来的成员(自2012年以来)成员(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来)(自2012年以来, - FCCEE喷油器系统的设计协调员(自2014年以来) - ESP设计研究的成员,提供轻型暗物质实验(LDMX)(自2017年以来)•教学任命
提高 X 射线自由电子激光器亮度最有希望的方向之一是开发新型光电阴极材料。这项研究提出了一种新方法,通过结合机器学习和多目标筛选来发现高亮度光电阴极。第一次筛选产生了一系列光电阴极材料,预计这些材料的固有发射率比目前最先进的材料低 4 倍。第二次筛选产生了一系列光电阴极材料,预计这些材料的性能与目前使用的材料相当,但具有出色的空气稳定性 - 可在干燥空气环境中运输和储存。
高效有机发光二极管 (OLED) 通常由多层堆栈组成,包括电荷传输层、电荷和激子阻挡层,以将电荷复合限制在发射层内。本文展示了一种基于热激活延迟荧光的高度简化的单层蓝光 OLED,其发射层简单地夹在由聚合物导电阳极和金属阴极组成的欧姆接触之间。单层 OLED 的外部量子效率为 27.7%,高亮度下滚降很小。内部量子效率接近 1,表明高度简化的无限制层单层 OLED 可以实现最先进的性能,同时大大降低设计、制造和设备分析的复杂性。
●涵盖了多种用于光学应用的晶体:激光和非线性光学晶体,磁光晶体,闪烁体/剂量计晶体,宽带隙半导体,压电和铁电晶体等等等等。●我们当前的主要研究目标是:用于高亮度照明设备的单晶磷光器。用于激光机械的光学隔离器的法拉迪旋转器。用于高温使用的压电晶体,例如燃烧压力传感器。氧化包胶作为新型宽带隙半导体。用于IR光学应用的Chalcogenide●积极促进与大学,国立研究所和行业的合作,并积极追求国际合作,以促进新的观点和原始思想。
摘要:微光发射二极管(µ LED)具有高响应速度,寿命长,高亮度和可靠性的优势,被广泛视为下一代展示技术的核心。但是,由于诸如高生产成本和低量子效率(EQE)之类的问题,µ LED尚未真正商业化。此外,量子点(QD)的颜色转换效率(CCE) - µ LED也是其在展示行业中实际应用的主要障碍。在这篇综述中,我们系统地总结了纳米材料和纳米结构在µ LED中的最新应用,并讨论了这些方法对提高µ LED的发光效率以及QD-µLED的颜色转换效率的实际效果。最后,提出了µ LED商业化的挑战和未来前景。
摘要带电粒子的重建将是高亮度大型强子对撞机(HL-LHC)的关键计算挑战,其中增加的数据速率导致当前模式识别算法的运行时间大大增加。此处探索的另一种方法将模式识别表示为二次无约束的二进制优化(QUBO),该方法允许在经典和量子退火器上运行算法。虽然提出的方法的总体时间及其缩放量仍待测量和研究,但我们证明,就效率和纯度而言,可以实现LHC跟踪算法的相同物理性能。将需要进行更多的研究以在HL-LHC条件下实现可比的性能,因为增加的轨道密度降低了QUBO轨道段分类器的纯度。
ERTICAL -外腔面发射激光器 (VECSEL) 因其能够在很宽的波长范围内产生高功率高亮度发射而备受关注 [1]。半导体增益的固有波长多功能性与开放式谐振腔相结合,可以实现从紫外到中红外的基波和频率转换发射 [2]。然而,VECSEL 的技术发展并未均匀分布在所有波长区域,导致某些光谱窗口的覆盖效果不佳。700-800 nm 范围就是一个例子,它最近因在生物光子学 [3]、医学 [4] 和光谱学 [5] 中的应用而引起了人们的关注。此外,该波长范围的频率倍增为紫外发射开辟了新的途径,原子分子和光学物理学可以从窄线宽可调谐激光器中受益,可用于原子冷却和同位素分离 [6]。
随着高能高亮度对撞机 [1] 的出现,尤其是 1994 年 6 月 LHC 建造计划的批准 [2],显然探测器上的电子系统需要具有抗辐射能力,才能在所需的 10 年实验寿命内生存 [3]。航天工业 [4] 所采用的方法是依靠工业合格的抗辐射商用现货元器件 (COTS) 或合格的消费电子元器件,这显然不适合高能物理 (HEP) 项目,因为高能物理项目受到的辐射剂量远远超过太空中的辐射剂量,而元器件数量众多意味着系统成本高昂。毋庸置疑,实施实验所需的大多数功能在消费市场上是找不到的,尽管数据通信系统肯定不是这种情况,尽管工业界无法提供所需的抗辐射元器件,但已经领先于 HEP 的需求 [5, 6]。