图 4:a) 显微照片显示层和感兴趣的区域。黄色虚线表示熔池边界。黄色框表示拍摄高倍显微照片的区域,b)-e) 高倍显微照片,b) 层 11 CS,c) 层
在丹麦,地质碳储存(GCS)已被优先作为气候作用的直接解决方案。HAVNSØDOMAL结构已被确定为GC最有希望的位置之一,因为它的大小和特性被认为适用于GC。然而,主要基于旧,稀疏和低质量的地震数据的初步评估尚不确定有关该结构的前瞻性存储资源和完整性。为了实现明智的决策和储存操作的规划,作为针对丹麦整个近海建筑物的大规模收购活动的一部分,该地区的地震数据获取工作于2022年在该地区进行。调查的目的是描述结构封闭并绘制可能危害GCS操作的故障的可能地质特征。总共使用创新的双元素记录系统来获取132 km的高倍和高分辨率2D轮廓,以实现深层和浅的地下成像目的。录制包括两个振动源和一个分布在10 m处的节点记录器的组合,以及连接到移动地带的2-M基的基于2-M的微电机电系统(MEMS)基于基于的重新线。地震数据包含有关GC的所有感兴趣范围的信息。该结构估计为定义明确的四向封闭,该封闭库是连续的。解释了厚的,大部分是均匀的密封岩,并且在近表面没有发现大规模的断层。根据现有背景信息支持的结果提供了关键信息,以协助与HAVNSØ的未来存储操作有关的进一步决策和行动。
神经组织中的小胶质细胞增殖(神经炎症)发生在感染、神经系统疾病、神经毒性和其他情况期间。在基础科学和临床研究中,小胶质细胞增殖的量化需要经过培训的专家进行大量的手动计数(细胞点击)(每个案例约 2 小时)。之前使该过程自动化的努力主要集中在基于立体学估计全局细胞数量,使用基于深度学习(DL)的高倍率分割免疫染色的小胶质细胞。为了进一步提高吞吐效率,我们提出了一种新方法,使用卷积神经网络(CNN)的快照集合,使用局部图像(即低倍(20 倍)放大率)进行训练,以预测全局级别的高或低小胶质细胞增殖。专家使用立体学来量化高倍率下的整体小胶质细胞数量,在动物(小鼠)级别应用高或低增殖的标签,然后将这个全局标签分配给每个 20 倍图像作为训练 CNN 预测全局增殖的基本事实。为了测试准确性,我们用每个类别中的六个小鼠大脑进行交叉验证,用于训练,再用每个类别中的一个进行测试。对集合的预测取平均值,并根据该大脑中大多数图像的预测类别为测试大脑分配标签。该集合在每例不到一分钟的时间内准确地对 14 个大脑中的 11 个(约 80%)进行了增殖分类,无需在高倍放大下进行细胞级分割或手动立体学分析。这种方法首次表明,使用局部图像训练 DL 模型可以有效地在全局层面预测小胶质细胞增殖。本研究中使用的数据集可公开获取:tinyurl.com/20xData-USF-SRC。
“医疗建筑”一词通常包括医院、治疗中心以及支持这些建筑的科学实验室建筑。本文的重点是那些需要高可用性的建筑,这意味着无论外部因素如何,建筑及其设施都应保持充分和适当的使用。在地震、飓风和台风多发地区,安全性和可用性是重叠的。手术室在此类事件期间或至少在事件发生后不久是否仍可用于护理受影响的患者?入住该建筑是否安全?事件期间的地板振动水平是否可用并允许安全使用精细的操作程序?此类建筑对其服务的人群也很重要。它们需要很长时间来规划,建造成本高昂。它们配备了广泛的空气处理、临床气体、烟雾提取和其他设备,服务水平很高。它们的使用寿命通常至少为 60 年,而且鉴于医学的快速变化,在建筑物使用寿命的最后几年中进行的许多程序将与早些年的程序大不相同。因此,这些建筑往往采用坚固的混凝土框架、平板、宽柱距、间隙厂房楼层(多层建筑中专门用于厂房的整个楼层),以便随着未来需求的变化,可以完全重新规划空间。ISO 2394 从可靠性(结构在其设计使用寿命内满足规定要求的能力 1 )方面设定了建筑结构工程的总体性能要求。可靠性涵盖安全性(结构或结构构件避免超过极限状态的能力)、适用性(结构或结构构件在所有预期作用下在正常使用条件下充分发挥性能的能力)和耐久性(通过计划维护,在规定时间内达到设计性能)。在大多数情况下,适用性问题占据了结构工程师和支持他们的振动专家的注意力。对于医疗保健建筑,不同的地板振动适用性限制适用于不同的活动,其中最严格的是对振动最敏感的设备(通常是提供高倍放大医学成像或机器人操作的设备)。1.2 地板振动适用性限制
NAVMED P-5055 CH-2 至 2011 年 2 月版本第 2 章 3。特殊研究。所需的特殊研究记录为:a。体检前 3 个月内进行白细胞计数 (WBC) 和血细胞比容 (HCT)。b. 尿液分析。体检前 3 个月内使用显微镜高倍视野对尿液进行红细胞检测。c. 40 岁及以上的女性需要进行乳房检查(手动和临床乳房检查)。平民女性工人可以由其平民提供者进行此项检查,并将文件提交给海军检查员。平民女性工人还可以提交乳房 X 线摄影检查的结果以供考虑。无需进行女性盆腔检查。d. 不再需要进行直肠指检 (DRE)。在第 18 栏中标记“未检查 (NE)”。 e. 此外,以下特殊研究可能适用: (1) 必须按照本手册第 3 章进行放射性物质的职业摄入和待计量有效剂量当量或待计量剂量当量的评估。(2) 当主管医生、放射卫生官员或放射卫生主管认为必要时,可以对身体组织、分泌物和排泄物进行放射性生物测定,以估计内部污染物的暴露量。如果指挥部缺乏执行适当放射性生物测定或执行承诺有效剂量当量或承诺剂量当量计算的能力,则必须向第 3 章中指定的支持设施之一提交援助请求。(3) 经 BUMED 负责人批准,可在适用的放射控制手册中提供因特定工作环境而需要进行特殊检查的额外要求。f. 第 2-2 条第 2 款列出的放射工作人员医疗资格更新周期不得延长以适应外部体检或特殊研究结果。未在第 2-2 条第 5b 款规定的范围内完成外部私人测试的工作人员将被暂时指定为不合格体检人员 (NPQ),其剂量计发放特权将被暂停,并在适用的情况下,被列入指挥部剂量测定不允许发放 (DINA)(取消资格)名单。当 RME 完成且工人身体合格时,必须恢复工人的剂量计发放特权。2022 年 12 月 2 日 2-5 CH-2
从细胞中提取 DNA 是分子生物学的一个基本过程,为各种科学研究和应用奠定了基础。本实验报告概述了使用常见实验室材料从香蕉细胞中分离 DNA 的分步过程。通过这个实验,我们旨在展示 DNA 提取的实用方面,同时强调这项基本技术所依据的生物学原理。本实验的主要目标是通过从香蕉细胞中分离 DNA 来直观地观察 DNA,从而了解 DNA 提取背后的基本方法。该过程涉及几个关键步骤:细胞裂解、膜破坏和 DNA 沉淀。首先,用刀将新鲜香蕉切成小块。然后将香蕉片放入研钵中用水捣碎,直到形成浆状。通过将 10 毫升 Trix 与 20 毫升水混合,制备洗涤剂溶液 (Trix),确保气泡形成最少。将捣碎的香蕉混合物和洗涤剂溶液混合并充分混合。将所得混合物通过双层粗棉布过滤到试管中,使用漏斗收集滤液。将冰冷的异丙醇(20-25 毫升)小心地加入装有滤液的试管中,保持轻微倾斜以尽量减少混合。将试管静置 3-5 分钟,在此期间沉淀的 DNA 呈现为管中上升的浑浊白色物质。这个实验提供了 DNA 分离的切实演示,展示了香蕉细胞中可见的 DNA 沉淀。使用洗涤剂和盐进行细胞裂解,结合酒精进行 DNA 沉淀,对于各种生物技术和法医应用(如基因工程和 DNA 指纹识别)至关重要。该过程依赖于分离纯 DNA 以进行进一步分析。在高倍显微镜下,DNA 呈现为扭曲的梯子形状。它包含基因,这些基因掌握着我们身体发育和功能的指令。基因产生执行大多数身体任务的蛋白质。基因变异(称为等位基因)影响头发颜色、眼睛颜色和耳垂形状等特征。这些指令被包装在细胞内,使其太小而无法正常看到或触摸。但是,由于 DNA 存在于每个细胞中,因此可以从生物体中提取大量 DNA。 在这种情况下,我们将使用家用产品从香蕉中提取 DNA。 材料: * 1/2 根去皮的熟香蕉 * 1/2 杯热水 * 1 茶匙盐 * 1/2 茶匙洗洁精 * 可重新密封的拉链袋(夸脱大小) * 提前放在冰箱中的极冷外用酒精(异丙醇) * 咖啡过滤器 * 窄玻璃杯 * 木制搅拌器 分步说明: 1. 将可重新密封的袋子中的香蕉捣碎,直到它像布丁一样。 2. 将热水和盐混合,然后将溶液倒入袋中。 3. 轻轻挤压并混合内容物 30-45 秒。 4.加入洗洁精,轻轻搅拌以避免产生过多泡沫。5. 将咖啡滤纸放在透明玻璃杯中,将杯口固定在杯口周围。6. 将混合物倒入滤纸中,静置直至所有液体滴入杯中。7. 取出并丢弃用过的咖啡滤纸。8. 慢慢地将冷酒精倒入杯边,在香蕉混合物顶部形成 2.5-5 厘米厚的一层。9. 等待八分钟,观察酒精层中形成的气泡和浑浊物质。10. 用木制搅拌器收集浑浊的 DNA 碎片,旋转搅拌器使它们聚集在一起。从香蕉搅拌器中取出的看起来像云的东西实际上是 DNA!有教师和学生包。最近的实验可以通过认识到挤压香蕉可以分解细胞并有助于破坏细胞壁来理解,但为什么要添加其他成分?我们是如何进入细胞并让 DNA 粘在一起的?让我们来思考一下与香蕉混合的三种关键物质:盐水——在添加任何其他物质之前,先将香蕉在盐水中捣碎。这一步是为添加洗洁精做准备,洗洁精有助于释放 DNA。一旦 DNA 被释放,这种盐将帮助 DNA 链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放 DNA。酒精——DNA 团块可溶于某些液体,但不溶于酒精,因此添加酒精有助于 DNA 团块的形成。图片来源:Ralph Daily 通过 Wikimedia Commons 提供的香蕉和草莓图片。这种盐可以帮助DNA链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放DNA。酒精——DNA团块可溶于某些液体,但不溶于酒精,因此加入酒精有助于DNA团块的形成。图片来源:Ralph Daily,来自 Wikimedia Commons 的香蕉和草莓图片。这种盐可以帮助DNA链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放DNA。酒精——DNA团块可溶于某些液体,但不溶于酒精,因此加入酒精有助于DNA团块的形成。图片来源:Ralph Daily,来自 Wikimedia Commons 的香蕉和草莓图片。