简历 台积电欧洲总裁 Maria Marced 女士是台积电欧洲总裁,负责推动台积电在欧洲的业务发展、战略和管理。在加入台积电之前,Maria 曾担任恩智浦半导体/飞利浦半导体的高级副总裁兼销售和营销总经理。Maria 加入飞利浦半导体,担任联网多媒体解决方案业务部高级副总裁兼总经理,负责监督飞利浦联网消费者应用的半导体解决方案。加入飞利浦之前,Maria 曾在英特尔工作,在那里她的职业生涯发展了 19 年多,最终担任英特尔欧洲、中东和非洲地区副总裁兼总经理。Maria 在西班牙马德里理工大学完成学业后,曾在多家公司担任开发工程师,其中包括 Electrooptica Juan de la Cierva,她在那里率先使用了微处理器;以及 Telefonica,她曾参与过一个分组交换项目,这是当今互联网的雏形。Maria 是 Ceva Inc. 的非执行董事会成员,也是 GSA(全球半导体协会)欧洲、中东和非洲地区领导委员会主席。Maria 出生于西班牙瓦伦西亚,已婚,育有一女。
自治系统(如未剥削的飞机系统(UAS))的广泛采用有可能保护战场上的美国人,增加流动性和服务不足社区的访问权限,并改善医疗结果。他们还对美国国家安全构成了重大风险,除非他们的设计以确保它们具有弹性的常规中断和恶意威胁而又不延续全身偏见的方式。,尽管有潜在的收益和重大风险,但美国还是输给了中国等外国竞争对手的全球领导。为了恢复美国的经济竞争力并保护国家安全,塔尔萨枢纽公平和可信赖的自治(Theta)将把更大的塔尔萨地区(GTR)1转变为全球竞争性的枢纽,用于开发,测试,制造,制造和部署可信赖和公平的自主系统(TEASEAS)。2由Tulsa Innovation Labs(TIL)领导,Theta代表来自GTR的70多名成员的财团,GTR是一个以12个县的区域为重点,该地区针对塔尔萨都会大都会统计区(MSA)。Theta将利用塔尔萨的航空航天制造业的强大遗产,对茶进行的研究和开发,全国独特的测试设施的大量投资,并致力于推进种族平等,以建立具有全球竞争性的技术枢纽。技术中心奖将使至少催化1.2亿美元的投资3投资3塔尔萨地区的创新经济,从而创造了60,000个新工作岗位,并为GTR创造了16亿美元的GDP。四年前,在能源行业的另一个下滑后,这一愿景似乎已经遥不可及。此外,全球使用的茶将带有“在美国塔尔萨的测试和制造”的绰号。塞塔(Theta)对经济发展愿景的概要大塔尔萨地区有望领导自主体系革命。在10年内,Theta将GTR设想为开发,测试,制造和部署可信赖和公平自治系统的中心。tulsa将在全球范围内代名词,例如未衣飞机系统,以及在全球使用中使用的自动驾驶汽车,无人机和机器人技术 - 无论是保护战场上的美国人还是向Heartland的农村社区运送药物 - 都会在美国塔尔萨(Tulsa)进行测试和制造。”theta将是通过广泛采用并确保国防技术优势确保美国经济活力所需的国内自治系统中心,同时释放了一波新公司和整个地区的好工作。GTR将成为如何利用联邦,慈善和私人投资来推动基于公平的经济发展和自我维持的增长的模型。然而,最近的联邦,私人和慈善投资是围绕国家独特的资产和行业建立数十年来建立的,这使塔尔萨的势头更新了,并在TEAS机会的背后使合作伙伴保持一致。现在,Theta的技术中心名称加速了塔尔萨地区建立全球竞争性茶业的野心。在催化剂中,2020年的塔尔萨创新实验室(TIL),塞塔(TIL),塞塔(TIL),塞塔(TIL),塞塔(TIL)的成立,其使命是将塔尔萨(Tulsa)确立为基于包容技术的经济发展的全国性领导者,而2022年为塔尔萨(BBBRC)建立了更好的区域挑战(BBBRC)授予塔尔萨地区高级流动性(TRAM)在该地区的促进了重要的行动,该地区的行动是在该地区的竞争中,该领域的发展是在该地区的一部分。 GTR的茶业。
张量凝胶技术提供了增加的可用容量,并减少了充电所需的时间。此外,张量凝胶细胞最大程度地减少了细胞内部的热量演化,从而提高了电池的效率和使用寿命。张量凝胶电池的无填充 /无溢流意味着不需要浇水。及其较大的内部表面积,机会充电也是可能的。在两班应用中也可以用作替换或替代标准电池的替代品。结果是一种多功能维护的电池技术,设定了阀门受铅酸电池的新标准。
简历 台积电欧洲总裁 Maria Marced 女士是台积电欧洲总裁,负责推动台积电在欧洲的业务发展、战略和管理。在加入台积电之前,Maria 曾担任恩智浦半导体/飞利浦半导体的高级副总裁兼销售和营销总经理。Maria 加入飞利浦半导体,担任联网多媒体解决方案业务部高级副总裁兼总经理,负责监督飞利浦联网消费者应用的半导体解决方案。加入飞利浦之前,Maria 曾在英特尔工作,在那里她的职业生涯发展了 19 年多,最终担任英特尔欧洲、中东和非洲地区副总裁兼总经理。Maria 在西班牙马德里理工大学完成学业后,曾在多家公司担任开发工程师,其中包括 Electrooptica Juan de la Cierva,她在那里率先使用了微处理器;以及 Telefonica,她曾参与过一个分组交换项目,这是当今互联网的雏形。Maria 是 Ceva Inc. 的非执行董事会成员,也是 GSA(全球半导体协会)欧洲、中东和非洲地区领导委员会主席。Maria 出生于西班牙瓦伦西亚,已婚,育有一女。
Realsun Investments Co.,Ltd。Realtek Investment Co.,Realking Investments Limited的Realsun Technology Corporation Realtek Singapore PTE Ltd. Realtek Realtek Investment Investment Singeking Singek Singina Cortive Cortive taiwan Limited Co.Suzhe Limited Co. peortek Investmen Limite Co.Sue Limite Co.Herealtek Investments Co.
481 3 ....................................................................................................................................................... Brief Job Description 3 ...................................................................................................................... Applicable National Occupational Standards (NOS) 3 .............................................................................Acronyms 89 ........................................................................................................................................... Glossary 90 .............................................................................................................................................
摘要 — 生物技术和微电子技术的不断进步不断推动着有源植入式医疗设备(如起搏器)的小型化和功耗极限。植入式起搏器是电池供电的嵌入式系统,其自主性是延长设备寿命的重要制约因素。然而,起搏器的处理器消耗了大部分电池能量,因为它必须实时分析心脏活动。因此,选择合适的 CMOS 技术来制造处理器是至关重要的一点。在此背景下,本文提出了一种主要估算基于 ARM 的处理器功耗的方法。该方法已应用于意法半导体的三种制造技术。仿真结果表明,在温度为 27°C 的情况下,对于 HCMOS9A (1.2 V)、CMOS065 (1 V) 和 FDSOI (1 V) 技术,Cortex-M0+ 消耗的平均漏电功率分别为 300 nW、136 nW 和 486 nW,有效能量分别为 398 µW/MHz、49.9 µW/MHz 和 20.3 µW/MHz。但是,通过将电源电压降低至 0.8 V,FDSOI 技术可以获得与 CMOS065 类似的漏电功耗。最后,在功耗、面积和价格标准方面,CMOS065 似乎是在功耗、面积和成本方面提供最佳折衷的技术,即使温度升高 10°C 会导致这三种技术的平均漏电功率增加 30% 至 54.5%。
稿件于 2020 年 8 月 30 日收到;2020 年 11 月 4 日修订;2020 年 11 月 22 日接受。出版日期 2020 年 12 月 14 日;当前版本日期 2021 年 3 月 26 日。本文经副主编 Yusuke Oike 批准。这项工作得到了索尼半导体解决方案公司/索尼电子公司的支持。(通讯作者:Hyochan An。)Hyochan An、Qirui Zhang、Kyojin D. Choo、Shiyu Liu、Bowen Liu、Hengfei Zhong、David Blaauw、Ronald Dreslinski、Hun Seok Kim 和 Dennis Sylvester 就职于密歇根大学电气与计算机工程系,密歇根州安娜堡 48109 美国(电子邮件:hyochan@umich.edu)。Sam Schiferl 就职于亚马逊,华盛顿州西雅图 98109 美国。 Siddharth Venkatesan 就职于亚马逊公司,美国加利福尼亚州圣克拉拉 95054。Tim Wesley 就职于 MemryX 公司,美国密歇根州安娜堡 48105。Jingcheng Wang 和 H. Zhong 就职于苹果公司,美国加利福尼亚州库比蒂诺 95014。Ziyun Li 就职于 Facebook 公司,美国华盛顿州雷德蒙德 98052。Luyao Gong 就职于谷歌公司,美国加利福尼亚州山景城 94043。本文中一个或多个图片的彩色版本可在 https://doi.org/10.1109/JSSC.2020.3041858 上找到。数字对象标识符 10.1109/JSSC.2020.3041858