在获得化学和工艺工程工程学位以及“技术与创新管理”专业硕士学位后,她担任了 3 年的水处理设计工程师,然后在 CEA Leti 担任了 6 年的工艺工程师和微电子洁净室流体公用设施专家。2011 年,她加入 CEA Liten,担任项目经理,负责能源系统评估,主要是氢领域。作为清洁氢 JU、法国研究机构和工业伙伴关系资助的研究项目的一部分,她进行了大约 30 项评估研究,为 PEMFC、SOEC/SOFC 和高压罐等氢组件开发了参数化成本和 LCA 模型,并开展了结合这些技术的应用案例研究。
开发用于储能应用的材料是我们这一代面临的主要问题之一。储能对于减少碳排放和扩大可再生能源的使用是必不可少的。近年来,可再生能源的生产在全球范围内有所增加。因此需要可持续的储能方案。氢被认为是创造能源的最佳能源载体或能源部门,因为它易于获取、清洁且几乎不排放污染物。它是元素周期表中最轻的元素,也是能够储存化学能量的最佳燃料。气态和液态氢都可以保存。储存氢气有一些困难。氢气储存通常需要高压罐。液态氢储存需要低温(极低温度)。
自 2021 财年 (FY) 年度绩效评估以来,BIL 已颁布。该法律包括一项关于清洁氢电解以生产清洁、低碳氢的规定。根据这项规定,氢气生产类别下的所有电解活动都将转移到 BIL 下。年度拨款中的氢气生产资金将集中在技术就绪水平 (TRL) 较低的非电解技术上,例如光电化学、太阳能热化学和生物制氢过程。过去一年,氢基础设施和氢存储类别启动的关键活动包括氢-天然气混合的 HyBlend 工作、四个用于高压罐的低成本碳纤维 (CF) 项目以及一个超大型液氢 (LH2) 储存容器项目。
压缩CO 2 储能技术是平抑可再生能源产量波动的可行解决方案,具有巨大的发展前景。目前面临的主要挑战是如何实现低压CO 2 的高密度储存。为了摆脱低压CO 2 液化储存和大规模洞穴储存带来的工程应用限制,本文提出了一种新型吸附跨临界压缩CO 2 储能系统。采用Fe-MOR(0.25)作为吸附剂,在298 K和0.1 MPa下CO 2 的储存密度可达390.94 kg/m 3 。基于热力学第一定律和第二定律进行热力学模拟。结果表明,设计条件下系统往返效率、火用效率和储能密度分别为66.68 %、67.79 %和12.11 kWh/m 3 。敏感性分析结果表明:高压罐储压和储温对系统具有复合效应,是影响系统性能的关键参数;临界点泄压会引起系统性能突变;换热器效率、压缩机和涡轮等熵效率的提高对系统性能有正向影响。
• 对于长度为 100 公里、直径为 36 英寸和 48 英寸的管道,一天内可储存的氢气有效质量为 150-300 吨,平准化成本为 0.05 美元/千克或更低。这要求管道运营商改变峰值压力以满足不同的客户需求。这种循环可能会缩短管道的使用寿命。• 对于盐穴,研究的典型盐穴案例是储存 500 吨氢气。准备成本约为 1800 万美元(36 美元/千克氢气)。如果储存 120 天(4 个月),则在洞穴中储存氢气的平准化成本为 1.2 美元/千克,如果定期储存 15 天,则仅为 0.15 美元/千克。• 对于加压储存(例如在加油站),使用适合 1000 kgH2/天加氢站的高压罐,该罐可能储存 1000 kg,成本为 600,000 美元。加氢站的氢气分配器将连接到罐,因此加氢站分配的所有氢气都将通过罐输送。因此,该罐每年可以储存 1000 kg x 365 天的氢气,并向车辆提供氢气进行加氢。在充分利用的情况下,最终的平准化储存成本约为 0.16 美元/kgH2,另外还需要 0.4 美元/kg 用于压缩。• 对于在大型、高度绝缘的罐中液态(低温)储存氢气,储罐的成本为 30-50 美元/kgH2。如果氢气储存一周,其平准化储存成本为 0.055-0.091 美元/kgH2,大型工厂液化成本另计 1.2 美元/kg。