lah 10(T C = 250 K),Drozdov和Al。(2019)LAH 10(T C = 260 K),Somayazalu和Al。(2019)YH 9(T C = 243 K),Kong和Al。(2019)YH 6(T C = 224 K),Troyan和Al。(2019)CAH 6(T C = 215 K),但等。(2021)CAH 6(T C = 210 K),Li和Al。(2022)SH 3(T C = 203 K),Drozdov和Al。(2015)THH 10(T C = 161 K),Semenoch和Al。(2019)CEH 10(T C = 115 K),Chen和Al。(2021)CEH 9(T C = 100K),Chen和Al。(2021)YH 4(T C = 88 K),Shao和Al。(2021)BAH 12(T C = 20 K),Chhen和Al。(2021)SNH X(T C = 70K),Hong和Al。(2022)
2019 年,快餐店在广告上的总支出为 50 亿美元,比 2012 年增加了 4 亿多美元(9%)。2019 年,学龄前儿童、儿童和青少年平均每天观看 2.1 到 2.3 个快餐电视广告。大多数广告宣传的是常规菜单和餐厅。不到 10% 的广告宣传的是儿童餐。2019 年,快餐店在西班牙语电视上投放广告花费 3.18 亿美元,比 2012 年增长了 33%。7 年来,西班牙裔学龄前儿童和儿童观看的广告数量分别增加了 2% 和 7%,而学龄前儿童和儿童整体观看的广告数量则有所下降。 2019 年,黑人学龄前儿童、儿童和青少年观看的快餐电视广告比白人同龄人多出约 75%,而 2012 年黑人青少年观看的广告多出 60%。尽管 2019 年有 274 家快餐店投放了广告,但 6 家餐厅(麦当劳、达美乐、汉堡王、塔可钟、索尼克和小凯撒)占据了快餐广告总支出的 46%,占儿童和青少年观看的快餐电视广告的约 55%。
在实验神经科学领域,用于记录大量神经元的电学和光学方法都取得了重大进展,每种方法都有各自的优势。通过开发荧光蛋白,如基因编码的钙指示剂(例如 GCaMP6/7[6,7])和电压敏感荧光蛋白(例如 Archon [8] 或 QuasAR [8,9]),用于记录神经活动的光学方法取得了重大进展。这些新的荧光探针使功能成像实验能够同时记录多达 10,000 个体内神经元 [2,8,9]。虽然这些都是强大的实验工具,但基于荧光蛋白的方法在临床转化中面临重大障碍,并且只能在没有植入式光学器件的情况下记录大脑的浅层区域。此外,外源性荧光蛋白的表达需要对宿主细胞进行修饰,这在应用于人类时具有重大的安全性和监管意义。最后,光在大脑中的散射和脑组织的热敏感性为开发一种可在空间上解析活动而不会使组织过热的实用植入式成像系统带来了重大的工程挑战 [10,11]。
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
PI 层围绕牺牲层(图 1H 中用红色箭头标记)。由于第二层 PI 被涂覆以填充这些孔,因此第一层和第二层 PI 层之间的界面实际上具有比平面界面更大的表面积,因此在第一层 PI 层和第二层 PI 层之间建立了更好的粘附性。孔阵列提供的更高机械稳定性可防止探针到达此界面时刺穿尖端。探针的尖端为 10
在过去十年中,立体定向放置电极已经成为针对多种神经和精神疾病进行深部脑记录和刺激的黄金标准。然而,目前的电极在空间分辨率和记录小群体神经元(更不用说单个神经元)的能力方面有限。在这里,我们报告了一种创新的、可定制的、单片集成的人体级灵活深度电极,它能够记录多达 128 个通道,并能够记录脑组织 10 厘米深度。这种薄的、探针引导的深度电极能够记录局部场电位和单个神经元活动(动作电位),并已在不同物种中得到验证。该设备代表了制造和设计方法的进步,扩展了临床神经病学主流技术的功能。
深度神经网络 (DNN) 的几何描述有可能揭示神经科学中计算模型的核心原理,同时抽象出模型架构和训练范例的细节。在这里,我们通过量化其自然图像表示的潜在维数来检查视觉皮层的 DNN 模型的几何形状。一种流行的观点认为,最佳 DNN 将其表示压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应该具有低维几何形状。令人惊讶的是,我们发现了一个相反方向的强烈趋势——在预测猴子电生理学和人类 fMRI 数据中对伸出刺激的皮层反应时,具有高维图像子空间的神经网络往往具有更好的泛化性能。这些发现适用于 DNN 的各种设计参数,它们提出了一个普遍原则,即高维几何形状为视觉皮层的 DNN 模型带来了显著的好处。
摘要:电力系统中长期愿景及其形态演化分析是引领电力行业发展的重要先导性研究,尤其在我国提出2060年实现温室气体净零排放的新目标下,如何加快发展可再生能源成为新的关注点。本文尝试从灵活性平衡的视角探究含高比例可再生能源的未来电力系统形态演化指标。在回顾国际上关于未来电力系统发展愿景相关文献的基础上,总结了未来电网的特征及其驱动力的变化,并提出了一种全局敏感性分析方法。考虑到影响演化路径的多重不确定性因素,抽取大样本模拟电力系统演化,并以西北电网为例,分析了我国高比例可再生能源的演化路径。