简介。- 一词“结构化光”是指具有非平凡且有趣的幅度,相位和/或极化分布的光场。大量工作已致力于生产结构化的光场,从而导致了新技术的发展和改进现有技术[1,2]。也许结构化光的最著名示例对应于携带轨道角动量的梁,广泛用于从量子光学到显微镜的应用中[3,4]。当前的工作着重于所谓的结构化高斯(SG)梁的结构梁的子类[5-8]。这些对近似波方程的解决方案具有自相似的特性,这意味着它们的强度曲线在传播到缩放因子时保持不变。sg梁包括众所周知的laguerre-gauss(lg)和雌雄同体 - 高斯(HG)梁[9],它们一直是广泛研究的主题,用于许多应用中的模态分解,例如模式分类和分量额定定位[10-13]。lg和Hg梁属于更广泛的SG梁,称为广义的Hermite-Laguerre-Gauss(HLG)模式[14,15],可以使用适当的圆柱形透镜(Attigmatic Translions)[16]来从HG或LG梁上获得。这些模式可以表示为模态Poincar´e球的表面上的点(MPS)[17-19],如图1。这种表示形式导致了这样的见解:这些梁可以在一系列散光转换上获得几何阶段[7,20 - 23]。HLG模式的MPS表示揭示了其固有的组结构和转换属性。这种结构的概括是将模态结构和极化混合[24]。但是,没有为无限的
为了最大限度地减少大范围无线光通信 (WOC) 应用中的发散并扩大潜在的链路范围,可以使用位于传输光纤端点焦距处的适当准直透镜对光束进行准直,以减少光束扩散的影响。使用靠近接收光纤端点的类似透镜将光束重新聚焦回光纤中。本报告深入探讨了与研究类似自由空间光通信系统相关的概念,并从理论上优化接收光束点尺寸以确保接收数据信号的最大效率。在研究真实系统时,考虑大气条件至关重要,因为它们具有重大影响。此外,本文还回顾并讨论了最近的进展和发展。
多年来,大气湍流一直是物理学和工程学领域的研究热点。当激光束在大气中传播时,它会受到散射、吸收和湍流等不同光学现象的影响。大气湍流效应是由折射率的变化引起的。不同大小的涡流会影响光波在大气中的传播。折射率的这些变化会导致传播的激光束产生不同的变化,如光束漂移、光束扩散和图像抖动。所有这些影响都会严重降低光束质量 (M 平方) 并降低系统在某些应用中的性能效率,包括自由空间光通信、激光雷达-激光雷达应用和定向能武器系统 [1- 5]。传统上,湍流由 Kolmogorov 模型类型定义。Kolmogorov 谱的幂律值为 11/3,用于描述高斯分布 [6]。许多光谱具有特定的内尺度和外尺度,如 Tatarskii 光谱、von Karman 光谱、Kolmogorov 光谱和广义修正光谱 [7]。本研究采用广义修正大气光谱模型。我们通过数值和分析方法执行高斯激光光束在不同传播距离下的传播行为。此外,我们还研究了一些参数对光束传播的影响。讨论了所有模拟结果,并将其与文献中的结果进行了比较。