摘要:随着对高功率密度电气和电子系统的需求不断增长,促进了具有高能量密度、高电容密度、高电压和频率、低重量、高温可操作性和环境友好性等特性的储能电容器的发展。与电解电容器和薄膜电容器相比,储能多层陶瓷电容器 (MLCC) 具有极低的等效串联电阻和等效串联电感、高电流处理能力和高温稳定性等特点。这些特性对于电动汽车、5G 基站、清洁能源发电和智能电网中的快速开关第三代宽带隙半导体等应用非常重要。目前已有大量关于最先进的 MLCC 储能解决方案的报道。然而,无铅电容器通常具有较低的能量密度,而高能量密度电容器通常含有铅,这是阻碍其广泛应用的关键问题。在这篇综述中,我们介绍了无铅储能 MLCC 的前景和挑战。首先介绍储能机理和器件特性;然后,从成分和结构优化等方面对储能用介电陶瓷进行总结;在详细介绍电极的制备工艺和结构设计后,讨论了储能用多层陶瓷电容器的最新进展;然后,从理论和技术的角度讨论了储能用多层陶瓷电容器在先进脉冲电源和高密度功率转换器方面的新兴应用;最后,讨论了实验室规模无铅储能用多层陶瓷电容器工业化的挑战和未来前景。关键词:多层陶瓷电容器(MLCC);无铅介电陶瓷;储能;高
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
近年来,新能源的广泛使用使得电力设备必须在高电压、大功率、高温等恶劣环境下工作[1,2]。因此,电介质材料作为电力设备必不可少的组成部分,受到了更多的关注。电力设备中使用的固体电介质可分为聚合物电介质和无机电介质。无机电介质具有较高的温度稳定性,但也存在击穿强度(E b )低、柔韧性差的缺点,给大规模制备带来了不可忽视的困难。与无机电介质不同,聚合物电介质具有重量轻、柔韧性好、易于加工等优点[3]。同时,优异的介电性能(高E b 、低介电损耗[tanδ])使其在电力设备中得到广泛的应用。随着电子和电力系统的不断小型化和功率输出的增加,许多领域都要求聚合物电介质在恶劣环境下可靠工作。例如,火箭和航天飞机壳体附近的控制和传感电子设备需要高温电介质材料在250 ∘ C 以上工作。在地下油气勘探中,工作温度超过 200 ∘ C [4]。不幸的是,传统聚合物电介质热稳定性差,严重威胁电力设备的可靠运行,并显著缩短其生命周期。因此,在高温应用中使用二次冷却设备来降低工作温度。然而,考虑到地下勘探和空间站等大型设施所经历的极端温度,二次冷却很难实现。因此,一个更具吸引力的策略是开发能够在高温下长期工作的耐高温聚合物电介质。这种策略可以提高系统可靠性,降低成本,并消除对大型冷却系统的需求以及远程放置电子设备所需的接线和互连 [5,6]。
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
由锂离子电池提供动力的主机系统,包括Trojan®Onepack锂离子电池,可能与铅酸电池供电时的行为不同。最值得注意的是,锂离子电池可能会与主机系统断开连接,而不会在各种条件下警告以避免内部损坏(“自动断开连接”)。自动断开将导致总功率损失。可能导致自动断开连接的条件的示例包括但不限于外部电源(充电器)或再生制动的高电压·电池低电压或低电量·电量·高电流·高电流·外部短路·高电路或低温·高温·自我诊断,请参阅10.3节,请参阅10.3节:自动盘点:“自动保护限制:”保护范围:“保护范围:”保护范围:“保护范围:”保护。在具有依赖电池电量的基本系统的设备中(例如,具有电子加速度和制动系统的低速车辆(每个都有“受影响的应用程序”),突然突然的功率中断可能会导致不良,意外且潜在的危险设备行为,包括但不限于制动损失或立即制动。Trojan®Onepack锂离子电池的用户和安装程序必须了解在受影响的应用中安装锂离子电池的后果。OnePack电池的用户和/或安装程序(“用户和/或安装程序”)对任何损害,对人员或财产的伤害(包括但不限于死亡)或与此类使用或安装相关的事故承担所有风险和责任。用户和/或安装人员应咨询与锂离子电池有关的任何受影响的降低风险降低措施的制造商。
• 将 GP 电源线端子连接到电源接线端子时,请先检查 GP 电源是否已通过断路器或类似装置完全关闭。• 除更换 GP 的背光灯外,请勿打开 GP 的外壳,因为高电压会流经 GP,触摸内部零件可能会导致触电。• 请勿使用超出 GP 指定电压范围的电源。否则可能会导致火灾或触电。• 请勿修改 GP 的设计,因为这可能会导致火灾或触电。• 请勿在存在易燃气体的环境中使用 GP,因为操作 GP 可能会引起爆炸。• GP 使用锂电池来备份其内部时钟数据。如果电池更换不当(即电池的 + 和 — 极接反),电池可能会爆炸。更换电池时,请联系您当地的 GP 经销商。• 请勿在危及生命或重大防灾场合使用 GP 触摸面板开关。对于安全相关开关(如紧急停止开关),请务必使用单独的机械开关。• 为防止操作员受伤或机器损坏,请务必设计机器操作系统,以使机器不会因 GP 与其主控制器之间的通信故障而发生故障。• GP 不适合用于飞机控制设备、航空航天设备、中央中继数据传输(通信)设备、核电控制设备或医疗生命支持设备,因为这些设备固有要求极高的安全性和可靠性。• 将 GP 与交通工具(火车、汽车和轮船)、灾害和犯罪预防设备、各种安全设备、非生命支持相关医疗设备等一起使用时。应使用冗余和/或故障安全系统设计,以确保适当的可靠性和安全性。
抽象空间动力卫星(SPS)是在太空中利用太阳能的巨大航天器。由于规模巨大,巨大的质量和高力量,因此存在许多技术困难。对于GW SPS系统,太空中产生的电力将超过2 gW,太阳阵列的整个区域将是几平方公里。空间中的高功率发电,传输和管理成为一个巨大的挑战。在论文中,提出了MR-SPS概念的主要方案,并引入了两个重要的子系统,太阳能收集和转换(SECC),电力传输和管理(PTM)。SECC子系统包括五十个太阳能阵列。每个太阳能子阵列由十二个太阳阵列模块组成。每个太阳能阵列的面积约为0.12 km 2。太阳能阵列将电力传输到安装在MR-SPS主结构上的电缆,该电源通过100个中动力旋转接头。PTM子系统转换,传输和分发SECC子系统的输出电力。大部分电力传输到天线,并分布在天线中。剩余的电力将传输并分配给服务设备以进行SPS的操作。采用了分布式和集中式高压PTM的混合,以满足SPS上电动设备电源的需求。分析了典型的空间环境会影响高功率电动系统。需要研究和解决关键技术,包括高较高的,长寿的薄膜GAAS PV电池,超大型 - 高电压(500 V)太阳能阵列,高功率导电旋转式关节,超高电压(20 kV)电缆(20 kV)电缆,高较高的电池,高较高的乘积,较高的平台,较高的速度,以及较高的速度和较高的转换,以及及好的转换,以及。
为了增加阴极材料的能力,氧阴离子氧化还原反应(ARR)已在基于Li/Na的氧化氧化物中引入,以提供超出常规阳离子氧化还原反应(CRR)的电荷补偿空间。[13–15]然而,高压下晶格O 2-离子的激活通常会导致不可逆的氧气释放,从而加速了结构性重建,并导致了能力和伏特的迅速衰减。[16–18]因此,氧气的电化学实现可逆ARR的利益对于实现高能阴极材料至关重要,这仍然具有挑战性,并且可以重现创新的结构设计。与锂离子系统相比,尤其是与富含Li的配置,似乎在氧气行为上是高度不可逆的,[19]各种Na-ion Sys-tems显示出可逆的ARR,但仅在最初的几个周期中。[11,13,14,16,19-35]这些作品表明了基于ARR的Na-ion电极的有希望的功能,这激发了我们探索优化策略,这些策略可以通过维持ARR的高压操作,同时通过维持其结构稳定性,使其能够实现Na-ion pathode材料的高压操作,同时又可以实现其结构稳定性。mn和fe是地壳中的两个高度丰富的元素,因此高度可取,用于设计笔尖的阴极材料。[41][36]然而,由于1)由于1)无法控制的氧气离子的不可控制的反应途径而在高电压下以Fe/Mn的基于Fe/Mn的阴极材料的速度快速降解和严重的结构转化,2)与Jahn-Teller exterct of Mn 3 + feo 6 + 3 +相关的有害结构性降解途径。 Fe 3 +的NeOS迁移/陷阱迁移到碱金属层中,特别是在高压下循环(> 4.0 V VS Na/Na +),[35,37-40]和4)带有TM层幻灯片的复杂相变。