这项研究旨在研究叶糖苷对高脂饮食喂养大鼠的生化变化的影响。成年雄性Wistar大鼠通过给予高脂饮食和蔗糖60天诱导糖尿病状态,然后口服甜叶菊(20 mg/kg/day),持续45天。各种参数,包括空腹血糖,口服葡萄糖耐受性,胰岛素,胰岛素耐受性,肝功能(ALT,AST,AST,ALP),肾功能(尿素和肌酐)以及脂质谱(TC,TG,TG,TG,TG,FFA,FFA,HDL-C和LDL-C和LDL-C和LDL-C),诸如LATED pectincin,例如LADETICERID lADETICER LADEPTIN,例如LASTIPINCINCINCINECTIN。Stevioside治疗显着改善了糖尿病大鼠的葡萄糖和胰岛素耐受性,并将其空腹血糖,血清胰岛素和脂质谱的水平归一化。在高脂饮食诱导的2型糖尿病大鼠模型中,甜叶菊有效地恢复了血清水平的改变,证明功效与二甲双胍的疗效相当。因此,Stevioside显示出有望作为管理2型糖尿病的潜在植物医学。
注意:数据是中位数(第1;第三四分之一),非参数ANOVA(Kruskal-Wallis测试)和两尾Mann-Whitney U测试,并适用于Dunn's和Bonferroni调整。hba1c,FPG,TG,HDL,LDL,FFA,HSCRP,HCL和全身胰岛素敏感性(M值)。粗体表示相应比较之间差异的显着或趋势。缩写:BMI,体重指数;骗子,耐葡萄糖的人; FFA,游离脂肪酸; FPG,禁食等离子体葡萄糖水平; HBA1C,糖基化血红蛋白; HCl,肝细胞脂质含量; HDL,高密度脂蛋白; H型,身体高的人; HSCRP,高敏性C反应蛋白; LDL,低密度脂蛋白; L型,身体低适合的人; REE基础,在禁食条件下静止的能量支出; REE胰岛素刺激了夹具期间的静止能量消耗; T2D,2型糖尿病; TG,甘油三酸酯。
尽管过量食用高脂肪食物是导致体重增加的主要原因,但是将膳食脂肪的口腔感觉特性与奖赏评价和饮食行为联系起来的神经机制仍不清楚。在这里,我们将新颖的食品工程方法与功能性神经影像学相结合,以表明人类眶额皮质 (OFC) 将高脂肪食物引起的口腔感觉转化为指导饮食行为的主观经济评价。男性和女性志愿者品尝并评估了脂肪和糖含量不同的营养控制液体食物(“奶昔”)。在口服食物加工过程中,OFC 活动编码了一个特定的口腔感觉参数,该参数介导食物脂肪含量对奖赏值的影响:滑动摩擦系数。具体而言,OFC 对口腔中食物的反应反映了脂肪液体在口腔表面产生的光滑、油腻质地(即口感)。OFC 中不同的活动模式编码了与特定食物相关的经济价值,这反映了滑动摩擦与其他食物特性(糖、脂肪、粘度)的主观整合。至关重要的是,OFC 对口腔质地的神经敏感性可以预测个体在自然饮食测试中的脂肪偏好:OFC 对与脂肪相关的口腔质地更敏感的个体在随意进食期间会消耗更多脂肪。我们的研究结果表明,人类大脑的奖励系统会通过口腔滑动摩擦感知膳食脂肪,这是一种机械食物参数,可能通过调节食物和口腔表面之间的相互作用来控制我们的日常饮食体验。这些发现确定了人类 OFC 在评估口腔食物质地以调节对高脂肪食物的偏好方面发挥的特殊作用。
2型糖尿病被认为是全世界十大威胁生命的疾病之一。为经济增长,肥胖和代谢综合征成为2型糖尿病的最常见危险因素。在这方面,高脂饮食喂养的C57BL/6J小鼠模型被广泛用于2型糖尿病发病机理和新型疗法发育。然而,在该小鼠模型中,用于对2型糖尿病进行分类的严重性疾病尚未确定,这导致了实验终点决策的困难。在这项研究中,我们以45%的高脂饮食喂食C57BL/6J雄性小鼠,该饮食在生理上接近人类的高脂作用,并评估了2型糖尿病的进展。在食用高脂饮食4周后,小鼠出现了代谢综合征,包括肥胖症,快速血浆胆固醇水平的显着增加,C肽升高和空腹血糖水平。通过将空腹血糖测试和2小时的口腔葡萄糖耐受性测试结合起来,我们的结果表明了从代谢综合征进行明确的渐进阶段,然后在C57BL/6J小鼠中2型糖尿病开始前,给定了45%的高脂饮食。此外,在代谢测量中,可以将积累体重增加> 16.23 g 12周,可以用作预测C57BL/6J小鼠中2型糖尿病发育的潜在参数。因此,这些结果可能会在选择适当的饮食饮食饮食C57BL/6J小鼠模型中选择适当的疾病阶段的期限来支持未来的研究,以研究2型糖尿病的早期预防和治疗。
基因组编辑是指修改生物体的 DNA 以改变其遗传信息。最有前途的基因组编辑工具之一是 CRISPR-Cas9,它代表成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (Cas-9)。CRISPR-Cas9 允许科学家通过靶向特定基因并引入修饰来精确改变 DNA 序列 [ 1 , 2 ]。在高胆固醇血症的情况下,主要目标是靶向参与胆固醇代谢的基因,以降低血液中的低密度脂蛋白 (LDL) 胆固醇水平。由于肝脏在脂蛋白颗粒的产生和清除中起着关键作用,因此基因组编辑策略经过优化以靶向肝细胞内的基因。例如,基于血清型 8 的腺相关病毒 (AAV) 载体对肝脏有特异性的趋向性,已在多项小鼠体细胞基因组编辑研究中用于 [3,4]。脂质纳米颗粒 (LNP) 也是 CRISPR-Cas9 编辑的运载载体,由于其能够与血清蛋白相互作用,可被肝细胞有效吸收 [5]。研究人员一直在探索利用基因组编辑开发新疗法,以替代现有疗法,包括他汀类药物、依折麦布、PCSK9(前蛋白转化酶枯草溶菌素/kexin 9 型)抑制剂、烟酸、胆汁酸螯合剂、纤维酸盐和贝伐单抗酸 [6-9]。他汀类药物在 20 世纪 80 年代末首次用于治疗高胆固醇。第一个被批准用于临床的他汀类药物是 1987 年的洛伐他汀 (Mevacor)。洛伐他汀获批后,其他他汀类药物也相继被开发并用于治疗高胆固醇血症。一些常用的他汀类药物包括辛伐他汀 (Zocor)、阿托伐他汀 (Lipitor)、普伐他汀 (Pravachol) 和瑞舒伐他汀 (Crestor)。虽然他汀类药物被认为是安全有效的,但使用时会出现不同的副作用,包括肌肉疼痛和无力、胃肠道症状和肝酶异常,这导致了替代疗法或补充疗法的发展 [ 10 , 11 ]。依折麦布通常被认为是无法耐受他汀类药物或需要进一步降低 LDL 水平的个人的有效选择 [ 12 ]。这种药物通过减少胆固醇从血管中吸收而起作用。
缩写:乙酰辅酶 A,乙酰辅酶 A;ASCVD,动脉粥样硬化性心血管疾病;ATM,脂肪组织巨噬细胞;BCG,卡介苗;CRP,高敏 C 反应蛋白;DAMP,损伤相关分子模式;FH,富马酸水合酶;H3K27ac,组蛋白 3 赖氨酸 27 乙酰化;H3K4me1,组蛋白 3 赖氨酸 4 单甲基化;H3K4me3,组蛋白 3 赖氨酸 4 三甲基化;HIF1 α,缺氧诱导因子 1 α;HITI,高血糖诱导的训练免疫;IL-1 β,白细胞介素 1 β;IL-6,白细胞介素 6;Ldlr,低密度脂蛋白受体; Lp(a),脂蛋白(a);LPS,脂多糖;LXRs,肝脏X受体;mTOR,雷帕霉素的机制靶点;NK,自然杀伤细胞;oxLDL,氧化LDL;OxPLs,氧化磷脂;PAMPs,病原体相关分子模式;PBMCs,外周血单核细胞;PRRs,模式识别受体;SAT,皮下脂肪组织;TCA,三羧酸循环;TIH,短暂性间歇性高血糖症;TLR,Toll样受体;TNF-α,肿瘤坏死因子α;VAT,内脏脂肪组织;WD,西方饮食。
'dwd dqg frgh dydlodlolw \ vwdwhphqw'dqg frgh xqghuo \ lqj wklv uhvhdufk uhvhdufk duh dydlodeoh dydlodeoh iurp fnqrzohgjphqwv:h wkdqn:roiudp 6fkxow] dqg klv jurxs iru vxsssruw $ ohmdqgurϯϯ&dvdexhqd 5rguljxh] 6lprq 0 motuvkdoo 6whidq 6dydjh iru vxssssssruw zlwul zl wullu&erorer& 。 Zrun ZDV XQGGG E \ wkh:Hoofrph 7uxvw dqg Wkh 5r \ do 6rflhw \ 6lu +6lu +hqu \'doh)hoorzvkls ϯϱ judqwv = = dqg = dqg = dqg = $ wr) 06 7udqvodwlrqdo 5hvfufk)dflolw \ 75)zklfk lv vxssruwhg e \ dϯϳ:hoofrph 7uxvw 0dmru $ zdug us wkh sxusrvh ri 2shq $ ffhvv wkh dxwkru kdv dssolhg d && ϯϵ%
微生物代谢物在胰岛素抵抗和2型糖尿病(T2D)的发病机理中起关键作用。使用16S rRNA基因测序和代谢组学评估了关于发酵高粱(FS)对T2D及其对代谢物的调节及其代谢物的调节的初步研究。fs可以改善高血糖,胰岛素抵抗,并逆转了与T2D呈正相关的机会性致病细菌(例如振荡器,乙酰屈射器和乙酰维利他)。fs促进了有益细菌(Muribaculum,parabacteroides和Phocaeicola)的生长,与粪便丁酸酯和丙酸酯与T2D成反比。fs降低了微生物代谢产物(硫酸盐,吲哚撒拉酸酯,硫酸硫酸盐,吲哚-3-醛)的血清浓度。fs增加了与T2D的苯基丙酸,苯基硫酸盐,缬氨酸,胆汁酸,牛胆酸,urs氧化胆酸和胆酸的水平。发酵高粱对T2D缓解的有益作用归因于肠道菌群及其相关的属代谢物的调节。
•Hanane Belhoul Fakir在博士学位的最后一年就剪切应力在引发动脉粥样硬化中的作用。她的独特观察表明,注入动脉介质的血液迅速转化为脂质,提供了长期怀疑但从未证明的证据,即瓦萨·瓦索拉(Vasa Vasora)破裂,动脉壁上的脆弱血管可能引发动脉粥样硬化。
我们在两例 LDL 和总胆固醇偏高的患者中发现了这种变异(BpG 未发表的观测数据)。位于 EGF 前体同源域的变异已在家族性高胆固醇血症 (FH) 患者(PMID 19837725、15241806、11810272、2088165、23375686)以及心肌梗死患者(PMID 25487149)和乳糜微粒血症综合征患者(PMID 28391899)中报告。Pirillo 等人报告了 107 名患有杂合 p.(Gly549Asp) 变异的 FH 患者和一名患有 p.(Gly549Asp) 变异且 PCSK9 基因中存在变异的患者(PMID 28965616)。 T raeger-Synodinos 报告了 34 名年龄在 2 个月至 16 岁之间的儿童,他们携带 p.(Gly549Asp) 变异杂合子 (PMID 9544850)。该变异也已在数名 FH 患者临床变异数据库 ClinVar 3698、荷兰 FH 数据库和 UMD-LDLR 数据库中报告。功能研究表明,该变异可降低受刺激的 T 淋巴细胞和 EBV 转化的 B 淋巴细胞中的 LDLR 活性,并抑制 LDL 转运并减少细胞中的 LDL 摄取 (PMID 21865347、25647241)。此外,已报道另一种影响相同氨基酸残基的变体 p.(Gly549Val) 或 p.(Gly528Val) 与 FH 相关 (PMID 1301940 , ClinVar 251955 )。
