将人类 apoA1 和 MPO 氧化剂抗性的 4WF 异构体转基因小鼠与 LDL 受体缺陷 (LDLr KO) 小鼠交配,并喂食西方饮食。在 LDLr KO 背景下,这些人类 apoA1 异构体的高水平表达不会导致 HDL 胆固醇水平升高。在雄性和雌性小鼠中,研究了病变随时间推移的进展情况,与 LDLr KO 小鼠相比,apoA1 和 4WF 转基因小鼠的病变进展明显延迟,非 HDL 胆固醇降低。使用病变面积相等的时间点,通过给小鼠喂食含有微粒体甘油三酯转移蛋白抑制剂的低脂控制饮食 7 周来启动病变消退。与 LDLr KO 相比,雄性 apoA1 和 4WF 转基因小鼠的病变消退得更厉害,但 4WF 亚型在促进病变消退方面并不优于未修饰亚型。
胰岛素抵抗会损害餐后葡萄糖通过4型葡萄糖转运蛋白(GLUT4)的吸收,并且是前2型糖尿病的primary缺陷。我们以前在肌肉,脂肪和神经元亚群中以人Glut4启动子驱动的胰岛素受体基因敲除(GIRKO)的形式发电了一种耐胰岛素的小鼠模型。然而,在正常食物饮食(NCD)6个月之前,Girko小鼠的糖尿病率保持较低,这表明其他因素/机制是导致不良代谢作用促进明显糖尿病的最终进展的不良代谢作用。在这项研究中,我们表征了成年吉科小鼠的代谢性疾病,急性切换为高脂饮食(HFD)喂养,以确定疾病进展所需的其他代谢挑战。与其他饮食诱导的肥胖症(DIO)和遗传模型不同(例如,DB/DB小鼠),Girko小鼠在HFD喂养方面保持倾斜,但发展了胰岛素抵抗综合征的其他基本特征。girko小鼠尽管增加了高血糖。此外,Girko小鼠的口服葡萄糖耐受性也受损,而Exendin-4的降低葡萄糖降低有限,这表明钝化的肠染色蛋白作用有助于高血糖。其次,由于HE-Patic脂质分泌,血清甘油三酸酯浓度和脂质液滴在肝细胞中累积,Girko小鼠在HFD上造成了严重的血脂异常。总而言之,我们的研究鉴定出有助于糖尿病进展的重要基因/饮食中的重要基因/饮食中,这些基因/饮食可能会利用这些糖尿病进展,从而发展出更有效的疗法。第三,HFD上的Girko小鼠在肠道中增加了炎症提示,这与HFD诱导的微生物组和血清脂多糖(LPS)有关。
●明显的高甘油三酯血症或对治疗有抵抗力的高甘油三项血症。> 20mmol/L的甘油三酸酯将由生物化学部致电GP实践/要求临床医生(除非这是先前的发现或患者在脂质诊所的照顾下)。这部分是由于继发于高甘油三项血症的急性胰腺炎的风险,其次是提示紧急行动以识别潜在原因并治疗它。如果患者的甘油三酸酯> 20mmol/L建议紧急与UHB脂质诊所团队联系以寻求建议。这些患者可能需要在纤维化(只要没有禁忌症的情况下)进行胰岛素输注或开始,以帮助将甘油三酸酯降低。甘油三酸酯10-20mmol/l应在5-14天之间重复建议。如果甘油三酸酯仍然> 10mmol/L考虑转介到UHB脂质诊所。与此同时,应就减少/避免酒精,低脂肪饮食和糖尿病控制的咨询咨询。
图2。(a)电气测试前PT顶电极的SEM地形,(b)电气测试前PT信号,(c)电测试后的顶电极,以及(d)电测试后PT的信号。
人们对于长期(> 6 个月)适应低碳水化合物、高脂肪 (LCHF) 饮食如何影响健康、训练有素的个体的胰岛素信号知之甚少。本研究比较了葡萄糖耐量;骨骼肌葡萄糖转运蛋白 4 (GLUT4) 和胰岛素受体底物 1 (IRS1) 含量;以及代表主要能量途径 (3-羟基乙酰辅酶 A 脱氢酶、肌酸激酶、柠檬酸合酶、乳酸脱氢酶、磷酸果糖激酶、磷酸化酶) 的肌肉酶活性,这些酶活性代表了长期遵循 LCHF 或混合常量营养素 (Mixed) 饮食的训练有素的自行车运动员。在不同的日子里,进行了 2 小时口服葡萄糖耐量测试,并从禁食参与者的股外侧肌获取肌肉样本。与混合组相比,LCHF 组的葡萄糖耐量降低,因为在整个口服葡萄糖耐量测试过程中,血浆葡萄糖浓度明显较高,血清胰岛素浓度达到峰值的时间较晚(LCHF,60 分钟;混合,30 分钟)。各组之间的全身胰岛素敏感性无统计学差异(松田指数:LCHF,8.7 ± 3.4 vs. 混合,12.9 ± 4.6;p = .08)。GLUT4(LCHF:1.13 ± 0.24;混合:1.44 ± 0.16;p = .026)和 IRS1(LCHF:0.25 ± 0.13;混合:0.46 ± 0.09;p = .016)蛋白质含量在 LCHF 肌肉中较低,但酶活性无差异。我们得出结论,习惯于 LCHF 饮食的训练有素的自行车运动员与混合饮食的对照组相比,葡萄糖耐受性降低。较低的骨骼肌 GLUT4 和 IRS1 含量可能部分解释了这一发现。这可能反映了对习惯性葡萄糖可用性降低的适应,而不是病理性胰岛素抵抗的发展。
摘要:肥胖和代谢疾病可能是神经退行性疾病发作和发展的危险因素。本研究的目的是研究自然饮食补充剂(NDS)的保护作用,其中含有姜黄,水莲蛋白,guggul,guggul,氯酸和依硫蛋白,对高脂肪饮食(HFD)喂养小鼠的大脑中的差异代谢和神经变化蛋白。在NDS处理的HFD大脑的大脑中发现了FACL-4,CERS-1,CERS-4,CERS-4,CERS-4,胆固醇浓度和胰岛素受体表达和胰岛素信号激活的增加的降低,与HFD未经处理的小鼠相比,NDS处理的HFD大脑的大脑中发现了NDS,这表明NDS能够防止脑部lipid lipid的胰岛素含量和中心胰岛素抑制。在NDS处理的HFD小鼠的大脑中,RN,ROS和脂质过氧化的水平,P-ERK,H-OXY,I-NOS,HSP60,NF-KB,GFAP,GFAP,IL-1β,IL-6,IL-6和CD4阳性细胞渗透率均低于HFD的HFD MICES的效果, NDS。通过免疫荧光证实了NDS处理的HFD小鼠中P-ERK和GFAP的表达降低。最后,在NDS处理的HFD小鼠的皮质切片中发现了较低数量的凋亡核。目前的数据表明,NDS通过减少脑脂肪的积累,氧化应激和炎症以及改善脑胰岛素抵抗来发挥HFD小鼠的神经保护作用。