多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
Sai Praneeth Thota, 1, 2,* Partha Pratim Bag, 1 Praveen Venkata Vadlani 3 和 Siva Kumar Belliraj 2, 4,* 摘要 利用植物基生物资源探索和开发用于长期可持续能源存储的新型纳米材料,可以提高能源供应市场的成本竞争力和减少环境影响,并满足绿色和可持续发展战略的迫切需求。 能源存储领域的最新研究趋势是专注于存储设备,包括超级电容器 (SC)、锂离子电池、燃料电池和铅酸电池。 超级电容器因其在功率和能量密度方面的卓越性能以及延长的使用寿命和在电动汽车、便携式电子设备以及固定电网等应用中的简便操作条件而具有吸引力。 由于超级电容器是由不可再生和化石资源构成的,因此迫切需要替代有效的材料。 来自可再生生物质来源的多维高孔隙率纳米结构碳可能是超级电容器电极材料的有前途的更绿色替代品。在 SC 中,源自生物质的多孔纳米碳充当电极表面的导电层。电导率、电解质的可及性、孔结构和形状、孔径分布以及高表面积对 SC 的比电容起着重要作用。本综述包括用于 SC 专用储能设备的生物质衍生多维纳米碳电极材料的最新研究平台及其未来前景。
摘要:可穿戴电子设备的市场正在经历显着的增长和未来的潜力。全球研究人员正在积极地改善这些设备,尤其是在开发具有平衡功能和可穿戴能力的可穿戴电子设备方面。静电纺丝,一种创建具有高表面积,孔隙率和有利的机械性能的纳米/微纤维膜的技术,用于人类体外和使用广泛材料的体内应用,这是一种有前途的方法。可穿戴的电子设备可以使用机械,热,蒸发和太阳能收集技术来为未来的能源需求创造动力,提供比传统资源更多的选择。本评论提供了有关如何在能量自主可穿戴无线传感系统中使用电纺技术的全面分析。它概述了静电纺丝技术,基本机制以及能量清除,人体生理信号传感,能量存储和用于数据传输天线的应用。评论讨论了可穿戴电子技术和纺织工程的结合,以创建出色的可穿戴设备并增加未来的协作机会。此外,还讨论了与使用这些设备对市场就绪产品进行适当测试有关的挑战。关键字:静电纺丝,纳米制造,能量收获,自动传感,可穿戴电子设备,可穿戴能源存储,无线通信,纺织工程
静电纺丝是一种用于制造具有高表面积和微孔隙率的聚合物支架的技术,可用于各种生物医学应用,例如心血管植入物、骨骼、心脏和神经组织工程以及药物输送。与传统的挤压聚合物设备相比,静电纺丝聚合物支架具有较高的表面积,因此更容易发生快速水解和氧化降解,这可能会影响设备在使用过程中的生物相容性和机械完整性。本研究旨在确定静电纺丝工艺参数如何影响聚合物支架的形态、降解曲线和机械性能。静电纺丝支架由聚(乳酸-乙醇酸共聚物)(PLGA 50:50 和 82:18)和聚己内酯 (PCL) 制成,以获得从 1500 nm 到 750 nm 不等的纤维直径。使用扫描电子显微镜 (SEM) 检查纳米纤维形态,并使用图像处理软件 (ImageJ) 测量纤维直径。通过将支架浸入 37°C 的 PBS 中 12-24 周来进行降解研究。定期取出样品,测量质量损失百分比和机械性能(拉伸强度和断裂伸长率)。使用差示扫描量热法 (DSC) 测量聚合物样品的玻璃化转变温度。我们的研究结果表明,聚合物支架特性(纤维直径和孔隙率)可以显著影响降解率,进而影响纤维随时间变化的机械完整性。这种理解将使我们能够预测和控制对体内性能至关重要的设备属性。
激活体液免疫并产生中和抗体的新疫苗平台需要对抗新兴的病原体,包括流体病毒。通过填充免疫细胞的抗原sca剂量将浆液泥浆浆中的高表面积造成抗原摄取,作为生物材料降解,以增强体液免疫力。抗原负载的 - 微凝胶引起了稳健的细胞体液免疫反应,CD4 + T卵泡辅助器(TFH)细胞增加,并长时间生发中心(GC)B细胞与常用的辅助辅助辅助,铝氢氧化铝(ALUM)相当。增加聚合物材料的重量分数会导致材料的增加和抗原特异性抗体滴度优于明矾。用被灭活的流体病毒疫苗接种的小鼠,加入了这种更高度交联的配方中,引起了强烈的抗体反应,并提供了防止高剂量病毒攻击的保护。通过调整物理和化学特性,可以增强辅助性,从而导致体液免疫和防止病原体,利用两种不同类型的抗原材料:个体蛋白质抗原和灭活病毒。平台的灵活性可以使新疫苗的设计能够增强先天和适应性的免疫细胞编程,从而产生和调整高能力抗体,这是一种产生长期免疫力的有前途的方法。
背景:单细胞生命中最早,最简单的形式发展了代谢,从而从事生长,修复,繁殖和能量收获的分子业务。作为单细胞生物演变成多细胞生物,他们的身体要求系统在许多与环境直接接触的细胞中移动代谢物。循环系统,即一种水管,演变为将代谢产物移入体内以及身体的所有细胞中。多细胞生物的循环系统变得越来越复杂,向进化的系统发育树移动。海绵(porifera)依靠简单的扩散,而水母(cnidaria)依靠身体抽水进行循环。在某种程度上,扩散和身体泵送不足以通过生物体循环所需的代谢产物。需要一个专用的循环系统才能有效地移动人体的代谢产物。循环系统需要泵来推动整个体内代谢物的液体悬浮液。这个泵称为心脏。最简单的心脏是在鱼(ichthys)中发现的;这心有两个腔室,一个中庭和一个心室。两腔心脏的缺乏是将含氧血液与无氧血液混合在一起。一种更有效和发达的,在爬行动物(乌龟)中发现了三个室的心脏,有两个心房和一个心室。额外的心房有助于防止将含氧血液与无氧血液混合。人心位于胸部内两个肺之间。人类(哺乳动物)四腔心脏,两个心房和两个心室由于从器官内的含氧血液完全分离而非常有效。心脏是一种强大的肌肉器官,可以通过人体的循环系统泵送血液。心脏以节奏为脉搏泵送血液,该脉冲由自主神经系统告知。当飞行或战斗反应发生在我们的大脑中时,例如当我们突然害怕时,我们的心率会迅速增加,我们可以感觉到我们的心脏在胸口内磅。正常的休息时间为每分钟60至100次或BPM。当一个人锻炼(例如跑步)时,自主神经系统会提高心律,而没有人有意识的思想。年轻人的最大心脏约为200;随着个人的年龄,这种最大值会减少。运动员健身的一种度量是他们的心输出量,这是他们可以从肺部循环到肌肉的血液量。心输出量是心脏中风量的心脏脉搏率的产物。普通人的中风量约为70毫升。对有氧训练的一种反应是中风量的扩大和维持快速心率的能力。世界一流的有氧运动员的中风量很大,可以长时间保持快速的心率,从而将大量的氧气输送到其工作肌肉中。当氧气被呼吸到肺部时,氧气会扩散到流经肺内高表面积肺泡床的血红细胞中。心脏和肺的功能是将氧气从环境传输到人体每个细胞内的线粒体,以从消化系统中氧化摄入的糖(葡萄糖),以提供生命所需的能量。含氧血液通过循环系统移动到高表面积毛细管床,氧气扩散到细胞内的线粒体中,参与代谢。血液通过心脏的四个腔室的流动发生在以下步骤中:
基因治疗是一种通过关闭致病或功能失调的基因并将特定基因传递到体内来治疗疾病的治疗方法。将治疗基因传递到目标细胞仍然是基因转移的一个限制。因此,基因转移是基因治疗的重要组成部分。基因传递系统通常分为基于病毒和非基于病毒的系统。在众多纳米结构中,纳米粒子被广泛用作非病毒基因转移的载体。磁性纳米粒子 (MNP) 近年来因其独特的磁性而被广泛应用于生物医学领域。原则上,它们的电荷和尺寸使 MNP 适合到达目标位置。此外,高表面积/体积比使 MNP 成为基因转移的理想选择。使用 MNP 进行基因转移的主要方法之一是磁转染。在这种方法中,DNA 和 MNP 在含盐的缓冲液中结合形成一种称为磁转染的复合物。这种复合物可以在磁场的影响下穿透细胞。带负电荷的 DNA 需要经过修饰才能穿过带负电荷的细胞膜,与 MNP 形成复合物,并增加其稳定性和生物相容性。为此,常用的聚合物如 PEI(例如两亲性聚(L-赖氨酸)、聚酰胺胺 (PAA) 和 PEG)用作基因载体。此外,MNP 和 PEI 等聚合物有助于 DNA 的内体逃逸。这篇小型综述总结了磁性粒子在基因转移的所有动态过程(纳米粒子合成、基因结合、细胞摄取、内体逃逸和体内靶向)中的特定基因转染(磁转染)。
与较大尺寸的形式相比,纳米材料具有出色的光学、电学和/或机械特性。它们在颜色、导电性、反应性、表面积与体积的比值和表面张力方面可能与宏观形式不同。正因为如此,纳米材料因其在疫苗生产、药物和药物输送方面的潜在应用而引起了科学家的兴趣 [3]。纳米载体是一种胶体药物输送装置,通常具有 500 纳米大小的亚微米颗粒。在过去的几十年里,人们对纳米载体进行了大量研究,因为它们在药物输送方面显示出巨大的前景。 [4] 由于纳米载体具有高表面积与体积的比值,它们可以改变药物的基本特性和生物活性。纳米载体可以融入药物输送系统的一些特性包括增强药代动力学和生物分布、降低毒性、提高溶解度和稳定性、控制释放和治疗剂的位点特异性输送 [5,6]。纳米技术最近已成为突破传统药物递送技术局限性的有用工具。为了改善药代动力学和生物分布特征、降低毒性、控制释放、增强溶解度和稳定性以及在特定位置递送有效载荷,纳米载体可以改变其封装部分的根本特性和生物活性 [7,8]。通过改变其组成、形状、大小和表面质量,纳米载体还可以表现出各种各样的物理化学性质 [9,10]。有机和无机系统均可用作纳米载体。无机纳米载体包括介孔二氧化硅纳米粒子 (MSN) 和金属纳米粒子,而有机纳米载体包括脂质体、脂质纳米粒子、聚合物纳米粒子、树枝状聚合物、胶束和病毒样颗粒 (VLP) [11]。
该电池系统中的石墨电极在66 mA g -1的电流密度下显示出70 mA H G -1的可逆特异性c。7随后,带有离子液体电解质的铝离子电池已受到广泛关注。为了增强该系统中铝离子电池的能量密度,研究人员主要致力于搜索具有高压平台,高可逆能力和良好循环稳定性的阴极材料。近年来,包括金属suldes在内的各种材料(MOS 2,8 CO 3 S 4(参考9),金属氧化物(Co 3 O 4,10 SNO 2,11 Tio 2(参考12),金属磷酸盐和磷酸盐(Cu 3 P,13 Co 3 PO 4(参考14),导电聚合物(PANI),15个碳材料(碳纸),16个和基于石墨的材料17,18已被广泛研究为用于铝离子电池的阴极材料。在这些材料中,基于石墨的材料已被广泛研究,因为它们的最高电压高原在2 V vs. Al/Al 3+和稳定的循环性能。但是,石墨的相对较低的特定能力限制了其商业应用。为了提高石墨的特定能力,研究人员主要集中于建造具有高表面积的特殊形态,并引入了多个缺陷和纳米级空隙。例如,Zhang等人。合成的聚噻吩/石墨复合材料,其具有较大表面的层状结构可容纳氯铝酸酯(ALCL 4-)。19在1000 mA g -1的电流密度下,其特征容量达到113 mA h g -1。另外,Lee等人。制备的酸处理的膨胀石墨(AEG)和碱蚀刻石墨(beg),它们具有涡轮结构和无序结构,
凝聚微孔网络在气体和能量存储、传感和催化应用方面受到了广泛关注。1 9,9'-螺二芴基序对电子应用尤其重要,2,3 也已成为一种流行的结构单元,可作为扭曲位点来创建具有内在微孔性的材料。4-23 Yamamoto 将易得的 2,2',7,7'-四溴-9,9'-螺二芴与 Ni(COD) 2 偶联,可产生非常高表面积的微孔网络,并且在类似条件下与刚性二溴化芳香支柱进行共聚,可为材料提供可调的光学和气体吸附性能。24,25 其他方法也从 2,2',7,7'-四溴-9,9'-螺二芴试剂开始产生了均聚物或共聚物网络。目前对基于 9,9'-螺二芴更四面体导向的 3,3',6,6' 位聚合的缩合网络的探索相对较少,这可能是由于在 3,3',6,6' 位选择性卤化固有的挑战性所致。最近在 3,3',6,6' 位选择性卤化的一项策略是先在 2,2',7,7' 位进行初始甲氧基化,然后与 I 2 /PIFA 反应,得到 2,2',7,7'-四碘-3,3'6,6'-四甲氧基-9,9'-螺二芴前体。26 对该前体的进一步修饰产生了核碱基修饰的四足体。 27 随后,四炔通过 Sonogashira 和乙炔偶联反应聚合,生成螺二芴骨架,可作为 Pd 和 Pt 催化氢化的载体。28 3,3',6,6'-