本文探讨了阻碍高超音速技术发展的主要挑战,重点是热管理,推进系统和可操作性。超音速技术(定义为超过5马赫的飞行)为军事和商业航空的进步提供了重要的机会。尽管五十多年的发展和不断增长的投资,尤其是五角大楼的2025年预算要求(69亿美元)强调了高超音速技术的广泛采用仍然不完整。在超声速度下产生的极端热量需要先进的材料和冷却系统,以维持结构完整性并保护关键组件。此外,开发合适的推进系统,例如Ramjets和Scramjets,对于实现和维持高超音速速度至关重要,但是这些系统目前在效率和应用方面面临限制。最后,本文讨论了与超声飞行相关的可操作性约束和雷达检测问题,这构成了重大的操作挑战。正在进行的国际竞争,特别是与俄罗斯和中国的竞争,强调了克服这些挑战以推进高超音速技术的战略重要性。调查结果表明,尽管已经取得了重大进展,但进一步的研发对于在军事和商业环境中都充分发挥了高超音速技术的潜力至关重要。
ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
1978 年《监察长法》(5 U.S.C.)§§ 401-424(经修订)授权我们及时接触我们认为必要的人员和材料,以进行监督。您可以从国防部指令 5106.01“国防部监察长(IG DoD)”(2012 年 4 月 20 日,经修订)和国防部指令 7050.03“国防部监察长办公室访问记录和信息”(2013 年 3 月 22 日,经修订)中获取有关国防部监察长办公室的信息。我们的网站是 www.dodig.mil。
传输层 SDA 表示,PWSA 的传输层旨在将跟踪层连接到地面的拦截器和其他武器系统,将“增强包括导弹防御在内的多个任务领域”。据国防部称,SDA 已经授予传输层第 1 部分和第 2 部分的原型协议。传输层最终将由大约 300-500 颗卫星组成。SDA 申请在 2025 财年为“数据传输层、传感器功能以及备用位置、导航和计时功能”拨款 14 亿美元。拦截器 MDA 探索了消灭敌方高超音速武器的方案,包括拦截导弹、超高速射弹、定向能武器和电子攻击系统。2020 年 1 月,MDA 发布了一份高超音速防御区域滑翔相武器系统拦截器的原型提案请求草案。该计划旨在“降低拦截器关键技术和集成风险”。 2021 年 4 月,MDA 转向滑翔段拦截器 (GPI),该拦截器将与宙斯盾武器系统集成。尽管 GPI 名义上将在 2034 财年提供高超音速导弹防御能力,但 2024 财年国防授权法案 (PL 118-31) 第 1666 节要求国防部在 2029 年 12 月 31 日之前实现该项目的初始作战能力,并在 2032 年 12 月 31 日之前实现全面作战能力。洛克希德马丁公司、诺斯罗普格鲁曼公司和雷神导弹与防御公司已获得 GPI “加速概念设计”阶段的合同。2024 年 5 月,国防部与日本签署了合作开发 GPI 的正式协议。
第 26 届 AIAA 国际太空飞机和高超音速系统和技术会议将于 2025 年与 AIAA 科学技术 (SciTech) 论坛和博览会同期举行,将为来自世界各地的与会者提供一个讨论和交流信息的论坛,讨论与太空飞机和高超音速大气飞行器相关的前沿研究和开发活动以及这些能力的基础技术。会议将介绍来自北美、南美、澳大利亚、欧洲和亚洲的国家计划,并讨论多种国际合作机会。技术论文主题包括计划中和正在进行的航天飞机和高超音速飞行器计划、先进运载火箭和高超音速大气飞行器概念、商业太空旅游概念、地面和飞行测试技术、结果和经验教训、再入飞行器系统和技术、航天飞机和高超音速飞行器的空气动力学和气动热力学、制导和控制系统、火箭、冲压发动机、超音速冲压发动机和其他先进推进系统,包括组件技术(例如进气口、燃烧系统、燃油喷射概念、点火和火焰稳定概念、喷嘴)、高温材料、热结构和热保护系统、健康监测和管理技术等。将围绕全球关注的相关主题组织特别小组会议。
2020 年,北约科学技术组织应用飞行器技术 (AVT) 专家组 008 (ST008) 将高超音速飞行器定义为“在非弹道弹道的大部分时间里在大气层内飞行,速度至少达到音速的五倍”。5 在这里,高超音速飞行器被细分为众所周知的高超音速滑翔飞行器 (HGV) 和高超音速巡航导弹 (HCM)。此外,第三组混合威胁也称为航空弹道导弹,被定义为介于弹道导弹和 HGV 之间的武器,兼具两者的特征。无论是从物理角度还是能力角度描述高超音速威胁,从军事角度来看,一般只有三个方面很重要:• 效应器的生存能力如何?• 效果能多快产生?• 可以产生哪种效果?
由中国航空研究院在美国印刷 如需更多副本,请直接咨询中国航空研究院院长,空军大学,55 Lemay Plaza,蒙哥马利,AL 36112 所有照片均根据知识共享署名-相同方式共享 4.0 国际许可证或版权法第 107 条的合理使用原则获得非营利性教育和非商业用途许可。 所有其他图形均由中国航空研究院创建或为其创建 电子邮件:Director@CASI-Research.ORG 网址:http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 免责声明 本学术研究论文中表达的观点为作者的观点,并不一定反映美国政府或国防部的官方政策或立场。根据空军指令 51-303《知识产权、专利、专利相关事项、商标和版权》的规定,本作品属于美国政府所有。有限的印刷和电子发行权 复制和印刷受 1976 年《版权法》和美国适用条约的约束。本文及其所含商标受法律保护。 本出版物仅供非商业用途使用。未经授权,禁止在线发布本出版物。允许复制本文件用于个人、学术或政府用途,但不得更改且完整,但复制时需注明作者和中国航空航天研究所 (CASI)。复制或以其他形式重复使用其任何研究文件用于商业用途需获得中国航空航天研究所的许可。有关重印和链接许可的信息,请联系中国航空航天研究所。 允许公开发布,无限分发。
2023年5月,HYDIS联盟联合来自14个欧洲国家的19个合作伙伴和20多个分包商,在2023年欧洲防务基金框架内提交了一项用于对抗新兴高度复杂威胁的大气层内拦截器的架构和技术成熟度概念研究。2023年7月12日,欧盟委员会宣布已选定该项目并给予资助。该联盟由欧洲导弹集团 (MBDA) 协调,提出了 HYDIS²(高超音速防御拦截器研究)项目,该项目汇集了国防团体、机构、中小企业、中型企业和大学。该联盟汇集了整个欧盟最优秀的导弹专家。法国、德国、意大利和荷兰已签署意向书并就初步共同要求达成一致,确认了他们的支持和参与。 HYDIS 2 的目标是研究不同的拦截器概念并完善相关关键技术,以便提供最佳的反高超音速和反弹道拦截解决方案,满足四个成员国(法国、意大利、德国和荷兰)的需求,同时考虑到欧洲 TWISTER 能力计划。该项目是欧洲国家为保卫民众和武装部队的使命做出贡献的核心要素,特别是针对与弹道威胁相比具有根本性变化的新兴高超音速威胁。 HYDIS² 联盟汇集了来自 14 个国家的 19 个合作伙伴和 20 多个分包商。合作伙伴包括阿丽亚娜集团 (ArianeGroup)、AVIO、Avio Aero、Bayern-Chemie、CIRA、DLR、GKN Fokker、LYNRED、MBDA España、MBDA France、MBDA Germany、MBDA Italia、OHB System AG、ONERA、ROXEL France、THALES LAS France、TDW、THALES Dutch 和 TNO。 HYDIS² 参与了 AQUILA 项目,该项目为多个欧洲国家提出了反高超音速拦截器概念,同时还与其他 MBDA 防空产品一起开发了全球区域防御产品组合。
Gerstner 女士拥有海军材料工作经验,曾为海军航空系统司令部 (NAVAIR) 和海军海上系统司令部 (NAVSEA) 从事研究、开发、测试和评估 (RDT&E)、在役工程和解决问题等工作。2007 年至 2011 年,Gerstner 女士在 NAVAIR China Lake 材料工程部担任材料工程师。随后,从 2011 年到 2019 年,她在 NSWC Carderock 分部非金属材料分部担任陶瓷组材料工程师,同时担任代理分部负责人。2019 年,她成为 NSWC Carderock 分部新成立的先进系统和传感器材料分部的分部负责人,该分部于 2022 年更名为高超音速和先进系统材料分部。她是公认的高级材料工程主题专家,研究以下海军武器系统的超高温材料:导弹防御局 (MDA) AEGIS-BMD SM3 Blk IB、SM3 Blk. IIA 以及各种防御性和进攻性高超音速飞行器。她的专业知识和经验包括陶瓷、陶瓷基复合材料、用于高速飞行器热保护系统的难熔金属和合金、导弹推进材料、前缘和飞行器鼻尖。