气候变化将对主食(主要或孤儿)作物的产量和营养质量产生负面影响。此外,气候现象(频率、强度)的不确定性使得加快开发适应新条件的品种至关重要(Owino 等人,2022 年)。GWAS(全基因组关联研究)和 GS(基因组选择)是研究标记-性状关联并减少育种时间和成本的有效方法。然而,这些方法的效率受到遗传力和遗传结构的影响,而且它们并不总是完全成功。因此,需要新的方法来补充这些方法并在更短的时间内实现目标。高通量技术的快速发展为开发新的植物育种替代方案提供了机会。例如,越来越多的证据表明组学数据提高了基因组预测的性能。此外,将基因组和功能组学数据与遗传和表型信息相结合可以发现负责关键农学表型的基因和途径。上述方法产生的大量数据主要通过机器学习和深度学习等新兴分支与表型相关联。该学科可以处理数据的维度和复杂性,将生物学知识和组学数据转化为精确设计的植物育种(尽管这项任务并不总是能够实时解决)。本研究主题中提出的工作涵盖了应对气候变化带来的挑战的广泛解决方案,我们相信它们将对该领域的研究人员有所帮助。栽培马铃薯(Solanum tuberosum)对干旱的敏感性对种植者构成了重大挑战,尤其是在气候变化和干旱事件发生频率不断增加的背景下。Fofana 等人评估了一组 384 个乙基
!“#$%&'()*&&!+',“ $$”% - ',%。/!+'0%1“ 2'3)%&2 $” +'4-“ $ 5'67'02%)$ 2&!+'3)“ $ 25'3*8)/2*”&# +92 ..“:2); 7 <“*.. 2# +'=>)”'a“。#!$” $&
我们感谢 Ciernia 实验室和 Pavlidis 实验室成员在整个项目过程中的实验室会议上提供的周到反馈和建议。我们还要感谢 Wai Hang (Tom) Cheng,他的帮助对于学习如何在 Axioscan 幻灯片扫描仪上成像以及开始进行小胶质细胞形态分析至关重要;Nicholas Michelson,他的帮助对于在 ImageJ 中排除 MicrogliaMorphology 各种特征的代码故障非常有帮助;以及 Dylan Terstege,他在发布之前慷慨地提供了用于 FASTMAP 对齐 Allen Brain Atlas 的材料。我们还要感谢 Brian MacVicar 博士与我们分享他实验室的 Cx3cr1- GFP 小鼠,我们将其用于 2xLPS 体内实验。我们感谢通过 Dynamic Brain 提供的资源
遗传多样性的宿主范围(1,3)。 卵巢支原体的遗传多样性含量很高,表明它们是重要的储层和感染来源的作用,而在BHS中,它很低,表明溢出物是主要的传输来源(1)。 的确,来自多层次序列分型(MLST)序列对祖先序列的状态重建证实了家用绵羊作为BHS的主要感染来源,强调了菌株键入对映射传输动力学的重要性(4)。 在BHS中,最初发生致命支气管瘤的爆发通常是在羔羊中反复发生的致命爆发。 在初始溢出后的2到15年观察到了反复爆发(2,5 - 7)。 最近的证据表明,可能没有跨支架免疫,使存活的动物容易感染(4,8)。 为了减少溢出事件的可能性,联邦和州机构实施了针对国内和野羊的空间分离的政策(9)。 最近在美国西部和加拿大进行了增加的采样工作,以发现10个州和三个省份的Ovipneumoniae大分枝杆菌的流行率(10)。遗传多样性的宿主范围(1,3)。卵巢支原体的遗传多样性含量很高,表明它们是重要的储层和感染来源的作用,而在BHS中,它很低,表明溢出物是主要的传输来源(1)。的确,来自多层次序列分型(MLST)序列对祖先序列的状态重建证实了家用绵羊作为BHS的主要感染来源,强调了菌株键入对映射传输动力学的重要性(4)。在BHS中,最初发生致命支气管瘤的爆发通常是在羔羊中反复发生的致命爆发。在初始溢出后的2到15年观察到了反复爆发(2,5 - 7)。最近的证据表明,可能没有跨支架免疫,使存活的动物容易感染(4,8)。为了减少溢出事件的可能性,联邦和州机构实施了针对国内和野羊的空间分离的政策(9)。最近在美国西部和加拿大进行了增加的采样工作,以发现10个州和三个省份的Ovipneumoniae大分枝杆菌的流行率(10)。
细菌逆转录酶系统在许多生物技术应用中充当单链 DNA 的细胞内工厂。在这些技术中,天然的逆转录酶非编码 RNA (ncRNA) 被修饰以编码模板,以通过逆转录产生定制 DNA 序列。逆转录效率是逆转录酶技术的主要限制步骤,但我们缺乏系统的知识,了解如何在改变逆转录酶序列以产生定制 DNA 的同时提高或保持逆转录效率。在这里,我们测试了数千种对逆转录酶-Eco1 ncRNA 的不同修饰,并在汇集变体文库实验中测量 DNA 的产生,从而确定了 ncRNA 中对修饰具有耐受性和不耐受性的区域。我们将这些新信息应用于特定应用:使用逆转录酶与 CRISPR-Cas9 RNA 引导核酸酶 (editron) 结合产生精确的基因组编辑供体。我们使用酿酒酵母中的高通量文库来额外定义编辑酶的设计规则。我们将有关 retron DNA 生成和编辑子设计规则的新知识扩展到人类基因组编辑,以实现迄今为止最高效率的 retron-Eco1 编辑子。
NETosis 是一种特殊的细胞死亡机制,通过形成中性粒细胞胞外陷阱 (NET) 实现。1 NET 可导致多种疾病的发病,包括类风湿性关节炎和 COVID-19。1,2 开发直接靶向 NET 或抑制上游激活和信号传导事件的抑制剂提供了一种有吸引力的治疗方法。1-3 该领域正在进行的商业活动包括同类首创抗组蛋白治疗药物 CIT-013 (Citryll) 的 1 期试验,以及 DDP-1 抑制剂 Brensocatib (Insmed Inc.),正在进行非囊性纤维化支气管扩张的 3 期试验。新型 NETosis 抑制剂的开发将依赖于强大的高通量筛选试验来推进药物发现。为此,开发了使用原代人中性粒细胞和分化 HL-60 (dHL60) 细胞的 NETosis 筛选试验。
RosetteArray ® Platform for Quantitative High-Throughput Screening of Human Neurodevelopmental Risk Brady F. Lundin 1,2,3,* , Gavin T. Knight 3,4,* , Nikolai J. Fedorchak 4 , Kevin Krucki 4 , Nisha Iyer 1,3 , Jack E. Maher 3 , Nicholas R. Izban 3 , Abilene Roberts 3 , Madeline R. Cicero 3,Joshua F. Robinson 5,Bermans J. Iskandar 6,Rebecca Willett 4,7和Randolph S. Ashton和Randolph S. Ashton 1,3,4,8 1生物医学工程系,威斯康星州麦迪逊,麦迪逊大学,威斯康星州麦迪逊大学,美国威斯康星州53705,美国23705,美国2 Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA 4 Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA 5 Center of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA 6 Department of Neurological Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA 7 Departments of Statistics and Computer Science, University of Chicago, Chicago, IL 60637, USA 8 Lead Contact, correspondence: rashton2@wisc.edu *Equal contribution SUMMARY Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are研究。然而,它们用于筛选复杂的NDD病因和药物发现的效用受到缺乏可扩展和可量化的推导格式的限制。在这里,我们描述了Rosettearray®
材料综合,形态控制和设备工程已将PCE推向了19%以上的单连接设备,而串联配置的PCE超过20%。[5 - 8]关键的发展是非富裕受体(NFAS)的持续进展。特定的,低于1.6 eV的典型光学带隙(E G)的低带隙材料可以增强太阳光利用率:AM 1.5G太阳能光谱的光线分配使约51%的太阳能光子光子在近交易所区域(NIR)区域中发现。[9]此外,在这些材料中发现了其他吸引人的物理特性,包括强偶极矩和低激子结合能。[10]这些在NIR地区吸收的低频带NFA吸引了许多新兴的PV技术的兴趣。它们已在半透明的OPV中广泛用于各种应用,包括Agrivoltaics,电力生成窗户,热绝缘,磨损电子设备和建筑物集成的PV。[9,11,12]此外,它们将吸收范围扩展到NIR光谱的能力已在串联OPV中,[13-16] Ternary opvs,[17-19]和nir-absorting有机光探测器。[20 - 23]
摘要:通过细胞内递送核苷修饰的mRNA向免疫细胞进行免疫调节是一种有吸引力的体内免疫工程学方法,并在传染病,癌症免疫疗法及其他地区应用。脂质纳米颗粒(LNP)已成为一个有前途的核酸输送平台,但LNP设计标准的定义较差,从而使LNP发现筛选过程的限制限制步骤。在这项研究中,我们采用了基于分子条形码的体内LNP筛查中的高通量,以研究LNP组成对免疫tropismism的影响,并在疫苗和全身免疫疗法中应用。在两个肌内(I.M.)和静脉内(i.v.)注射,我们观察到了两种给药途径的免疫种群对LNP吸收的不同影响,从而了解了对体内免疫工程的LNP设计标准的见解。在验证研究中,I.M.的铅LNP公式 给药显示出比使用临床标准脂质Dlin-MC3-DMA(MC3)配制的LNP的脾脏和排水淋巴结的大量mRNA翻译。 i.v.的铅LNP配方 给药显示出在脾脏和外围血液中的有效免疫转染,其中一个铅LNP显示出脾树突状细胞的大量转染,另一种诱导了循环单核细胞的大量转染。在验证研究中,I.M.的铅LNP公式给药显示出比使用临床标准脂质Dlin-MC3-DMA(MC3)配制的LNP的脾脏和排水淋巴结的大量mRNA翻译。i.v.的铅LNP配方给药显示出在脾脏和外围血液中的有效免疫转染,其中一个铅LNP显示出脾树突状细胞的大量转染,另一种诱导了循环单核细胞的大量转染。总的来说,通过体内高通量筛查确定的免疫型LNP对本地和全身传递的mRNA都表现出显着的希望,并证实了从我们的筛选过程中收集的LNP设计标准的价值,该筛选过程
Thermo Scientific™TMTPRO试剂使研究人员能够在单个LC-MS/MS实验中同时识别和量化许多样品中的蛋白质和肽。当前的TMTPRO同质质量标签结合了13 C&15 N稳定的同位素,以通过高分辨率MS/MS分析并行对多达18个样品进行定量分析。为了进一步提高多路复用能力,我们开发了17种同位素的同型同位同位素集,该集合在记者组上包含一个2 h同位素,以产生不同的记者离子质量,与3 MDA的现有集合不同。与传统的试剂集合结合使用,氘化试剂可以对Thermo Scientific™Orbitrap平台上多达35个样品进行多重定量分析。在这里,我们表征了新型的TMTPRO变体,并评估了它们的32个PLEX定量的性能。