摘要我们介绍了Nelisa,这是一个微型,高通量和高保真蛋白质分析平台。DNA寡核苷酸用于在光谱编码的微粒上预启动抗体对,并执行位移介导的检测,同时确保在非同源抗体对之间的空间分离。使用流式细胞术在高通量上进行成本效益,并在高通量上进行。我们组装了一个由191个目标组成的炎症面板,这些炎症面板多重地多路复用,而没有交叉反应性或对性能与1 plex信号的影响,其灵敏度低至0.1pg/ml,并且在平台上的测量值跨越8个幅度。然后,我们进行了一个大规模的PBMC分泌组筛选,具有细胞因子为肌扰动物和读出,测量了7,392个样品,一周不到一周的时间生成约1.5m蛋白质数据标记,与其他高度多重的免疫仪相比,吞吐量的显着进展。我们发现了447个显着的细胞因子反应,包括多个推测的细胞因子反应,这些反应在供体中保守和刺激条件。我们还验证了其在表型筛查中的用途,并提出了Nelisa在药物发现中的应用。
摘要:到目前为止,玻璃是生物分子阵列的最常见底物,包括高通量测序流动细胞和微阵列。通过使用硅烷化学为原位合成或生物学或化学合成的生物分子的原位合成或表面固定化提供适当的官能团和反应性,对天然玻璃羟基表面进行了修饰。这些阵列通常是寡核苷酸或肽的,然后在荧光读数之前在温暖的水缓冲液中进行长时间的孵育时间。在这些条件下,玻璃的硅质键易于水解,导致生物分子的显着损失和伴随的测定信号丧失。在这里,我们证明,与标准单足硅烷的等效官能化相比,用二倍硅烷的玻璃表面功能化可大大提高稳定性。使用光刻原位DNA的原位合成,我们表明二倍体硅烷与磷光素化学兼容,并且在所得阵列上进行的杂交提供了大大改善的信号和信号 - 噪声比率,并且与单足硅烷官方化的表面相比。
摘要 — 高通量卫星 (HTS) 及其数字有效载荷技术有望在即将到来的 6G 网络的推动下发挥关键作用。HTS 主要设计用于提供更高的数据速率和容量。在波束成形、高级调制技术、可重构相控阵技术和电子可控天线等技术进步的推动下,HTS 已成为未来网络生成的基本组成部分。本文全面介绍了 HTS 系统的最新进展,重点关注标准化、专利、信道多址技术、路由、负载平衡和软件定义网络 (SDN) 的作用。此外,我们还为下一代卫星系统提供了一个愿景,我们将其称为超高通量卫星 (EHTS),该卫星系统面向自主卫星,由这些系统的主要要求和关键技术支持。EHTS 系统的设计将使其最大限度地提高频谱重用和数据速率,并灵活地控制容量以满足用户需求。我们介绍了一种用于未来再生有效载荷的新型架构,同时总结了该架构所带来的挑战。
图1。高通量杂交捕获量的长基因组片段工作流程。 (a)高分子量(HMW)基因组DNA需要长片段的制备和富集。 (b)使用高通量兼容的G管将HMW DNA碎片至〜10 kb。 (c)使用特殊准备的尺寸选择珠通过尺寸选择去除多余的较小片段。 (d)尺寸选定的片段被最终修复(ER)A-Tail(AT),并将适配器连接到适配器序列,并带有样品识别条形码序列。 (e)样品池与XGEN自定义HYB面板杂交,并捕获并富集。 (f)富集的目标片段通过远程PCR扩增。 (g)放大的富集片段是第二次尺寸选择的或清理以进行最佳测序读取长度。 然后,富集和条形码的样品池接受所需的第三代测序工作流程。高通量杂交捕获量的长基因组片段工作流程。(a)高分子量(HMW)基因组DNA需要长片段的制备和富集。(b)使用高通量兼容的G管将HMW DNA碎片至〜10 kb。(c)使用特殊准备的尺寸选择珠通过尺寸选择去除多余的较小片段。(d)尺寸选定的片段被最终修复(ER)A-Tail(AT),并将适配器连接到适配器序列,并带有样品识别条形码序列。(e)样品池与XGEN自定义HYB面板杂交,并捕获并富集。(f)富集的目标片段通过远程PCR扩增。(g)放大的富集片段是第二次尺寸选择的或清理以进行最佳测序读取长度。富集和条形码的样品池接受所需的第三代测序工作流程。
库以相等的摩尔方式合并,并使用具有85 pm加载浓度的单个SMRT®细胞在续集®IIE系统上进行测序。QC和测序结果(图3-4,表2)表明1,400 rpm速度设置产生了最佳的HIFI读取长度轮廓。剪切240秒产生的平均HIFI读取长度为17,703 bp,而剪切480秒的平均读数为16,855 bp的平均读取长度。在240和480秒时,更快的1,800 rpm设置覆盖了DNA,导致平均HIFI读取长度分别为13,184 bp和11,658 bp。通常,当使用FastPrep-96剪切DNA时,较小的工作速度较小的时间将导致较大的平均片段长度。
1 俄勒冈州波特兰市俄勒冈健康与科学大学神经外科系;2 马萨诸塞州波士顿市麻省总医院神经内科系;3 马萨诸塞州波士顿市哈佛医学院;加利福尼亚州圣地亚哥市加利福尼亚大学神经外科系、电气与计算机工程系和神经内科系;6 韩国蔚山市蔚山国立科学技术研究所生物医学工程系;7 佛罗里达州迈阿密市尼克劳斯儿童医院神经外科系;8 加利福尼亚州拉霍亚市加利福尼亚大学圣地亚哥分校生殖科学与医学中心妇产科和生殖科学系;9 韩国首尔市崇实大学;10 韩国蔚山市蔚山国立科学技术研究所;11 俄勒冈州波特兰市俄勒冈健康与科学大学帕佩家庭儿科研究所;以及 12 加利福尼亚州帕洛阿尔托市斯坦福大学神经外科系
摘要:致病性细菌在感染过程中形成生物膜,而多生物生物膜是最常见的表现。生物膜附着,成熟和/或抗生素敏感性主要通过微量滴定板测定进行评估,其中将细菌染色以通过光吸光度或荧光发射来实现生物量的定量。但是,目前不可能使用这些方法在双物种或多种物种生物膜中区分不同物种。菌落形成单位从选择性琼脂培养基上的均质双物种生物膜计数允许物种分化,但在高通量筛选方面很耗时。因此,迫切需要使用可靠,可行和快速的方法来研究多种物种和双物种群落的行为。这项研究表明,铜绿假单胞菌和Burkholderia cenocepacia菌株表达了特定的荧光或生物发光蛋白,与依赖于测量总生物群的其他方法相比,双重物种生物纤维的有效研究更加有效。结合荧光和生物发光测量值可以独立地分析生物膜内不同微生物物种,表明在双物种生物膜生长期间,每个人的存在程度随着时间的流逝而存在。这项工作中开发的定量策略是可重现的,建议使用可以组成构成表达泛光或生物发光蛋白的菌株进行高通量微量液板方法的生物膜研究。
马来虎 ( Panthera tigris jacksoni ) 是马来西亚半岛的极度濒危物种。为了模拟老虎不每天捕猎的野外环境,许多野生动物保护区并不每天喂食老虎。然而,禁食对圈养马来虎肠道菌群的影响仍然未知。这项研究旨在通过比较禁食和正常喂养条件下圈养马来虎的微生物群落来表征其肠道菌群。这项研究是在马来西亚半岛的马六甲动物园进行的,马来虎每周一禁食。总共收集了 10 个马来虎粪便样本、2 个孟加拉虎(外群)和 4 个狮子(外群)的粪便样本,并进行了针对 16S rRNA V3-V4 区域的宏条形码分析。总的来说,我们在马来虎样本中确定了 14 个门、87 个科、167 个属和 53 种肠道微生物组。本研究发现的潜在有害细菌属包括梭杆菌、拟杆菌、狭义梭菌 1、
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2023 年 7 月 15 日发布。;https://doi.org/10.1101/2023.07.15.549169 doi:bioRxiv preprint
剪接体是一种极其复杂的机器,在人类中由 5 种 snRNA 和 150 多种蛋白质组成。我们扩展了单倍体 CRISPR-Cas9 碱基编辑以靶向整个人类剪接体,并使用 U2 snRNP/SF3b 抑制剂 pladienolide B 研究了突变体。超敏替换定义了含有 U1/U2 的 A 复合物中的功能位点,但也定义了在 SF3b 解离后的第二化学步骤中起作用的成分中的功能位点。可行的抗性替换不仅映射到 pladienolide B 结合位点,还映射到 SUGP1 的 G-patch 结构域,该结构域在酵母中缺乏直系同源物。我们使用这些突变体和生化方法将剪接体解离酶 DHX15/hPrp43 鉴定为 SUGP1 的 ATPase 配体。这些数据和其他数据支持一种模型,即 SUGP1 通过在动力学阻滞下触发早期剪接体分解来促进剪接保真度。我们的方法为分析人类细胞中必不可少的机器提供了一个模板。