严重减损是指对自然价值的直接和间接影响对附近价值的生存能力产生重大和/或不可接受的后果,包括景观的繁殖和/或持续性。可能考虑的因素包括:栖息地或植被的质量;价值相对于影响规模的要求;当前的保护状况和开发对此的影响;物种在某个区域的存在/不存在;该区域对于连通性的重要性;以及通过改善受影响价值直接范围内的保护措施可以抵消影响的程度。
1 机器人工程系,2 生物医学工程系,3 心理学系,4 印度泰米尔纳德邦哥印拜陀卡伦亚理工学院,5 加拿大卡尔加里大学。doi:10.15199/48.2024.09.27 使用提升小波变换进行基于熵的特征提取以对 EEG 信号进行分类摘要。在脑机接口 (BCI) 领域,一个关键的障碍在于有效地对运动想象 (MI) 信号进行分类。已经开发了许多基于脑电图 (EEG) 信号的 MI 分类技术。所提出的系统通过提升小波变换 (LWT) 将 EEG 信号转换为各种表示。长短期记忆 (LSTM) 用于对每行中提取的特征向量进行分类。在 PhysioNet 数据库上评估了该方法的性能,特别是用于区分右手和左手想象移动。该策略使得 LWT 的 72 个小波族中的 19 个的准确率达到 100%。这种组合被证明是基于 BCI 的脑电图分析的高效工具,展示了其作为该领域资源丰富的解决方案的潜力。压力。 W obszarze interfejsu mózg-komputer (BCI) kluczową przeszkodą jest skuteczna klasyfikacja sygnałów obrazowania motorycznego (MI). Opracowano liczne techniki klasyfikacji MI na podstawie sygnału elektroencefalogramu (EEG)。 Proponowany 系统支持脑电图 (EEG) 和提升小波变换 (LWT) 的变换。 Pamięć długoterminowa 长短期记忆 (LSTM) 是一个简单的学习方法,可以帮助您快速记忆。 Wydajność tej 方法是在 PhysioNet 和 bazie danych PhysioNet 中开玩笑的大洋洲,并在 celu rozróżnienia ruchu obrazowania prawej 和 lewej ręki 中使用。策略 ta zapewnia 100% dokładność w 19 z 72 rodzin falek LWT。该组合包括脑电图分析和 BCI 分析,可提供潜在的潜力。 ( Ekstrakcja cech oparta na entropii do klasyfikacji sygnału EEG przy użyciu transacji falkowej Lifting Wavelet ) 关键词:脑机接口、EEG、提升小波变换、LSTM。功能:计算机交互、脑电图、提升小波变换、LSTM。简介 运动想象 (MI) 代表了实现脑机接口 (BCI) 的一种方法。通常,它使用脑电图 (EEG) 来捕捉大脑活动,这是一种非侵入式且易于应用的方法。建议利用支持向量机 (SVM) 来生成非线性决策边界。此外,还定义了特定的核函数来处理数据集缺乏线性可分性的情况 [1]。研究人员在各种应用中对基于运动想象的脑机接口 EEG 信号分类进行了大量研究 [2-7]。在 BCI 的背景下,公共空间模式 (CSP) 是经常使用的特征之一。Selim 等人 [8] 提出了一种结合吸引子元基因算法和 Bat 优化算法的混合方法。这种混合方法用于选择 CSP 的最优特征并同时增强 SVM 的参数。其他研究则探索了使用 CSP 滤波器来推导新的时间序列。作者 [9] 采用了带通滤波器 (BPF) 和独立成分分析 (ICA) 等预处理技术来消除噪音。在区分左拳和右拳动作时,显式和隐式 MI 方法的准确率分别达到了 81±8% 和 83±3%。此外,各种研究还提出了结合不同方法以提高整体性能。在 [10] 中,设计了一种用于二元类 MI 分类的融合程序。它采用互相关技术提取特征,并利用最小二乘 SVM (LS-SVM) 进行分类。通过 10CV 方法进行性能评估,并将结果与八种替代方法进行比较,结果显示显著提高了 7.4%。提取特征和执行分类的另一种重要方法是使用卷积神经网络 (CNN) [11]。通过将 LSTM 网络与空间 CNN 集成,可以增强 BCI 的性能。随后,获得一个特征向量获得了一个特征向量获得了一个特征向量
本报告旨在向国会提供有关美国能源部 (DOE) 对马绍尔群岛共和国鲁尼特岛仙人掌陨石坑遏制结构进行的目视调查和地下水放射化学分析的活动和结果的信息,并确定这些调查和分析是否表明仙人掌陨石坑遏制结构内的污染物对埃尼威托克人民的健康风险发生了重大变化,如 2011 年岛屿地区法案第 112-149 号公法第 2 节所规定的那样。美国能源部于 2013 年和 2018 年对鲁尼特岛仙人掌陨石坑遏制结构完成了两次目视研究。这些研究评估了保护下方封装的受污染土壤和放射性碎片免受侵蚀的各个混凝土面板盖段的状况。虽然研究显示一些混凝土板存在可见缺陷,主要包括裂缝和混凝土板接缝和角落剥落,但能源部确定这些缺陷不是结构性的,也不太可能造成与放射性污染扩散到环境中相关的任何其他危害。此外,无损和核心样本测试结果表明,外部混凝土盖没有受损,并发挥了其预期作用,即提供有效的屏障以减少底层废料堆材料的自然侵蚀。鲁尼特岛地下水监测计划表明,在现有条件下,似乎没有明确证据表明仙人掌陨石坑放射性物质的扩散对近海泻湖或周围海域的辐射环境产生可测量的影响。泻湖水中观察到的 239+240 Pu 污染水平升高似乎主要是由泻湖沉积物中的钚引起的,而不是由仙人掌陨石坑污染物流入泻湖引起的。根据视觉研究和从 Runit 地下水监测计划观察到的数据,能源部确定,仙人掌陨石坑围堵结构内的污染物对埃尼威托克人民的健康风险没有显著变化。2022 年,能源部与美国陆军工程兵团 (USACE) 展开合作,协助设计和安装额外的地下水监测资源,以改善未来数据,并更详细地描绘仙人掌陨石坑围堵结构内部及周围的地下水流动和特征。
鲁尼特穹顶是位于埃内威托克环礁的鲁尼特岛上的一座围堵结构。埃内威托克环礁是美国前大气核武器试验场,位于马绍尔群岛共和国,位于西北太平洋夏威夷以西约 2300 英里处。1947 年,在埃内威托克开始进行核武器试验之前,埃内威托克环礁约 150 名居民被迁移到埃内威托克西南约 155 英里处的乌杰朗环礁。埃内威托克人民在经过广泛的清理和恢复计划后于 1980 年返回了他们的祖籍故土;然而,鲁尼特岛仍然无人居住。该围护结构建于 20 世纪 70 年代末,内有超过 10 万立方码的放射性污染土壤和碎屑,它们被封在混凝土中(废料堆),位于鲁尼特岛北端的一个无衬砌核试验坑,即仙人掌坑内。废料堆随后被一个非承重的外部混凝土盖覆盖,以帮助保护其免受自然侵蚀。该地点一直是埃尼威托克人民及其领导人关注的问题。