由小有机化合物引起的分析干扰继续对早期药物发现构成巨大挑战。已经开发了各种计算方法来识别可能引起测定干扰的化合物。但是,由于可用于模型开发的数据稀缺,这些方法的预测准确性和适用性受到限制。在这项工作中,我们介绍了E-Guard(专家指导的鲁棒干扰复合检测的增强),这是一个新颖的框架,试图通过整合自我介绍,积极的学习和专家指导的分子产生来解决数据稀缺和失衡。e-guard迭代地用与干扰相关的分子丰富了训练数据,从而产生了具有出色性能的定量结构交流关系(QSIR)模型。我们以四个高质量数据集,氧化还原反应性,纳米酸酯酶抑制和萤火虫荧光素酶抑制的示例,证明了电子方形的实用性。与未经e-Guard数据增强的模型相比,这些数据集的MCC值最高为0.47,其富集因子的改进有两个或更高。这些结果突出了电子保守物作为缓解早期药物发现中测定干扰的可扩展解决方案的潜力。
jiwon Moon(CS BS),CRA杰出的本科研究人员荣誉提名2025 Victor Nikhil Antony(CS PhD),Hri Pioneer 2025 Maia Stiber(CS PhD),HRI Pioneer,HRI先驱2024 Gopika ajaykumar(CS PHD),HRI PHD(CS PHD),HRI PIONEER 2023 SHIEER 20223 SHIE)本科研究人员决赛入围2022年Kaitlynn Pineda(CS博士学位),JHU计算机科学系研究员2021 Fanjun(Frank)BU(CS BS)(CS BS),CRA CRA杰出的本科生荣誉荣誉提及2021 AMAMA MAHMOOD(CS PHD)(CS PHD)奖学金2019 Maia Stiber(CS博士),JHU计算机科学系2019年Gopika Ajaykumar(CS博士),NSF研究生研究奖学金2018
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制来获得混合交流/直流微电网并联逆变器之间准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有环流。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的环流功率发生变化,尤其是在负载变化等意外干扰期间。如果该功率被逆变器吸收,则可能导致直流母线电压突然升高并使逆变器跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题将进一步恶化。在这项研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该系统可应用于包括可变负载和混合能源的并网模式和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析以约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,都使用了最大功率点跟踪 (MPPT) 技术,以便在环境条件存在差异时从混合电力系统中提取最大功率。最后,通过模拟结果确认了引入的混合微电网策略在不同模式下的可行性和有效性。
摘要 纠缠是量子信息处理的关键资源,因此需要在各种硬件平台上生成高保真度纠缠态的协议。虽然自旋链已被广泛研究以产生纠缠,但图结构也具有这种潜力;然而,只有几类图被用于这项特定任务。在本文中,我们将一种涉及两种不同耦合强度的特殊耦合方案应用于两个互连的 3×3 方图的图,使得它实际上包含三个缺陷。我们展示了这种结构如何生成贝尔态,其保真度取决于所选的耦合比。我们应用分区图论来降低图的维数,并表明,使用简化图或简化链,我们仍然可以模拟具有相同动态的相同协议。最后,我们研究了制造误差如何影响纠缠生成协议以及不同的等效结构如何受到影响,发现对于某些特定的耦合比,它们非常稳健。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年12月3日发布。 https://doi.org/10.1101/2024.12.02.626472 doi:Biorxiv Preprint
诊断癌症的程序需要严格的足够的医疗资源和基础。及时访问临床医生和实验室资源对于居住在贫困线以下的人通常是不可行的。1,2因此,有必要开发一种在护理点上有效检测癌症的手段,从而特别考虑了低资源临床环境中的后勤挑战。为实现这一目标,许多小组都将可见的弥漫性反射光谱(DRS)视为捕获可疑病变的“光学活检”的一种手段。这种“光学活检”方法有许多优势。例如,可以在门诊点的设置中进行此成像,并获得这些活检的设备,例如可见的光谱仪,相对便宜。例如,用于收集此处显示的数据的DRS系统的费用<$ 2500 USD 5,并且对发生恶性肿瘤发生的组织微环境的许多变化很敏感。这些变化的一个例子包括增加的血管生成,其表现为异常高吸收系数μa。另一个例子是肿瘤微环境内细胞外基质的崩溃,这会导致异常低降低的灭绝系数,μ0s。6
b'摘要\xe2\x80\x94准确估计充电状态 (SOC) 对于储能应用中电池管理系统 (BMS) 的有效和相对运行至关重要。本文提出了一种结合卷积神经网络 (CNN)、门控循环单元 (GRU) 和时间卷积网络 (TCN) 的新型混合深度学习模型,该模型结合了 RNN 模型特征和电压、电流和温度等非线性特征的时间依赖性,以与 SOC 建立关系。时间依赖性和监测信号之间的复杂关系源自磷酸铁锂 (LiFePO4) 电池的 DL 方法。所提出的模型利用 CNN 的特征提取能力、GRU 的时间动态建模和 TCN 序列预测强度的长期有效记忆能力来提高 SOC 估计的准确性和鲁棒性。我们使用来自 In\xef\xac\x82ux DB 的 LiFePO4 数据进行了实验,经过处理,并以 80:20 的比例用于模型的训练和验证。此外,我们将我们的模型的性能与 LSTM、CNN-LSTM、GRU、CNN-GRU 和 CNN-GRU-LSTM 的性能进行了比较。实验结果表明,我们提出的 CNN-GRU-TCN 混合模型在 LiFePO4 电池的 SOC 估计方面优于其他模型。'
摘要:本文研究了连续凸优化制导与鲁棒结构化 H ∞ 控制的耦合,用于可重复使用运载火箭 (RLV) 的下降和精确着陆。更具体地说,该制导和控制 (G&C) 系统预计将集成到非线性六自由度 RLV 控制动力学模拟器中,该模拟器涵盖配备推力矢量控制系统和可操纵平面翼的第一级火箭的气动和动力下降阶段,直到垂直着陆。进行了成本函数策略分析,以找出最有效的闭环实现方法,其中包括鲁棒控制系统和所涉及的运载火箭飞行力学。此外,还详细介绍了通过结构化 H ∞ 进行控制器合成。后者是在下降轨迹的不同点使用比例-积分-微分 (PID) 类结构构建的,并对姿态角、速率和横向体速度进行反馈。通过上述模拟器的线性分析和非线性情况验证了该架构,并通过在正常条件下以及存在扰动的情况下与基线系统比较性能和稳健性来验证 G&C 方法。总体结果表明,所提出的 G&C 系统是可重复使用发射器真实下降飞行和精确着陆阶段的相关候选系统。
为了应对及时的工程挑战,诸如Coop之类的方法通过直接从数据中学习最佳提示来自动化该过程。这减少了对手动调整的依赖,并可以提高模型对不同任务的适应性。在开放式识别挑战中,最近的研究表明,VLMS通过其有限查询集施加了封闭式假设。他们建议,简单地将查询设置扩展到包括更多类别并不能解决问题 - 实际上,由于错误分类和计算开销的增加,它可能会恶化性能(Miller等,2023)。为了减轻这些问题,已经提出了诸如纳入预测不确定性度量和专用的负嵌入等方法。这些方法旨在帮助模型识别输入何时不属于任何已知类别并适当处理此类案例