摘要 Öz 目的:近年来,许多重要细菌群落对抗生素的耐药性不断增加,导致人们对噬菌体分离和表征以及噬菌体不断扩大的临床潜力的文献兴趣日益浓厚。考虑到抗菌素耐药性特征,分离用于治疗鲍曼不动杆菌感染的噬菌体、确定其作用谱并进行表征非常重要。本研究旨在从环境水源中分离针对目标微生物鲍曼不动杆菌的特异性噬菌体。材料和方法:研究了 16 种不同的环境水样作为噬菌体的潜在来源。以具有多重耐药性的鲍曼不动杆菌临床分离株作为宿主细菌。使用单噬斑分离法分离针对目标细菌的特异性噬菌体。在体外研究期间,使用双琼脂法增加分离噬菌体的滴度,并评估其噬斑形态和宿主特异性。结果:噬菌体 vB_KlAcineto13 仅对目标细菌表现出溶解活性,不会感染其他细菌分离株。结论:根据本研究的结果,可以得出结论,噬菌体 vB_KlAcineto13 的宿主范围较窄,不会感染宿主细菌以外的其他测试细菌。然而,特性研究可能会提供有关噬菌体的更多详细信息。
这是一篇根据知识共享署名-非商业-禁止演绎许可条款开放获取的文章,允许在任何媒体中使用和分发,前提是正确引用原始作品、非商业使用且未进行任何修改或改编。© 2023 作者。区域科学论文由 John Wiley & Sons Ltd 代表区域科学协会国际出版。
• 模型的复杂性。虽然 PRA 的 SS1/23 并不要求公司使其机器学习算法更具解释性,但公司应为更复杂的模型分配更高的模型风险。然后应使用基于风险的模型分层来在模型生命周期中优先考虑其验证活动和其他风险控制,并识别和分类对公司业务活动和/或公司安全性和稳健性构成最大风险的模型。 • 有效的监督和问责。PRA 的 SS1/23 在治理原则 2 下提出了许多期望。例如,公司应在公司的组织结构和风险状况中确定最合适的相关 SMF,以承担 MRM 框架、其实施以及框架的执行和维护的总体责任。负责任的 SMF 关于 MRM 的职责可能包括:制定政策和程序以使 MRM 框架可操作并确保合规;分配框架的角色和职责;确保有效挑战;确保独立验证;评估和审查模型结果和验证及内部审计报告;在必要时采取及时的补救措施,以确保公司的总体模型风险保持在董事会批准的风险偏好范围内;并确保充足的资源、足够的系统和基础设施。
摘要:我们对英国柴郡的钻孔Ellesmere Port-1中的两个核心部分进行了高分辨率的多学科分析。生物地层学分析表明,核心部分分别是Kinderscoutian和晚期的Arnsbergian - Chokierian年龄。两个岩心都被分配到鲍兰页岩形成(Holywell页岩)。耦合的核心扫描和离散的地球化学分析可以以高地层分辨率对合成过程进行解释。两个核心都表现出石灰石的经典循环性,这是对非钙护理泥岩和粉石的钙质,被解释为在四阶海平面上流中表示沉积物的沉积。通过Ellesmere Port-1中的整个鲍兰页岩间隔,通过整个鲍兰页岩间隔对核心扫描数据耦合的机器学习启用了关键的岩相。机器预测表明,鲍兰页岩与CEFN-Y-FEDW砂岩形式的三个浊度叶片相互构图,并至少包含12个完整的四阶循环。与其他沉积岩相比,鲍兰页岩表现出很高的放射热生产力,这主要是由于相互互惠互为富集的优化。热建模表明,鲍兰页岩的放射热生产力在数百米的尺度上造成了可忽略的额外热量来源。
摘要:抗菌素抵抗(AMR)在全球范围内对健康,社会,环境和经济部门构成了显着威胁,并且需要认真关注解决这一问题。鲍曼尼氏杆菌在传染性细菌中被赋予了头等大事,因为它几乎对所有抗生素类别和治疗选择都具有广泛的耐药性。耐碳青霉苯甲酸杆菌的baumannii被分类为世界卫生组织(WHO)优先级的抗生素耐药菌细菌的重点清单之一。尽管可用的遗传操纵方法在鲍曼尼曲霉的实验室菌株中取得了成功,但在新获得的临床菌株中使用时,它们受到限制,因为这种菌株的AMR水平高于用于选择它们进行基因操作的AMR。最近,CRISPR-CAS(群集定期间隔短的短粒子重复序列/CRISPR相关蛋白)系统已成为基因组编辑的最有效,最有效,最精确的方法之一,并提供了靶标针对AMR基因在特定的细菌菌株中的AMR基因。基于CRISPR的基因组编辑已成功应用于各种细菌菌株中以对抗AMR。但是,在鲍曼曼尼(A. Baumannii)中尚未广泛探索该策略。本评论提供了详细的见解,了解CRISPR-CAS使用对A. Baumannii中与AMR相关的基因操纵的进度,现有情况和未来潜力。
乔治·考吉尔博士,阿伯丁大学名誉教授 题目:人工智能与基督教 摘要:虽然创造可以描述为“智能”的代理自古以来就是一个目标,但直到 20 世纪中叶才真正有能力构建可以执行被认为需要智能的任务的系统。尽管最近取得了一些引人注目的成功,但通用人工智能代理的创建仍然遥遥无期,即使它在实践中可以实现。在本文中,我将概述人工智能。这将包括简史,包括人工智能在其整个历史中如何被社会各界接受和看待;对人工智能当前焦点的简洁描述:成功和失败、用途和滥用;以及对人工智能当前专业的细分:它们是什么以及它们如何整合。我还将指出基督教对人工智能的一些反应。
基本 在我们的基本场景中,可以访问价值池 A。这只能通过连接到电网的智能充电器接收使用时间电价信号来实现,这意味着汽车不是在插入电源时进行充电,而是在响应指示电力以更便宜的价格提供的信号时进行充电。这要求用户签署随时间变化的使用时间 (ToU) 电价。通常对于家庭而言,ToU 电价意味着白天的电力价格较高,而晚上的电力价格较低。重要的是,访问这个值只需要智能充电功能,而不是双向充电功能,因为能量只向电动汽车单向流动。要实现双向充电,车辆必须具备此功能,并且配电系统运营商必须允许此功能。
伯灵顿规划区的官方规划 (1994) 于 1994 年 7 月 11 日通过第 78-1994 号附例由伯灵顿市议会通过。随后,该规划经修改后于 1997 年 3 月 5 日由哈尔顿地区市政当局批准。该地区将规划的某些部分提交给安大略市政委员会作出决定,而某些部分则被推迟以供进一步审议。该市的前官方规划于 1969 年 7 月 14 日由议会通过,并于 1971 年 6 月 16 日由市政事务部长批准,但于 1997 年 2 月 24 日由市议会通过第 15-1997 号附例废除,但仅限于该地区批准的新官方规划 (1994)。换句话说,对于新计划中已被地区推迟或转交的部分,前官方计划的相关部分将继续有效,直到推迟或转交问题得到解决。本《官方计划办公室合并》(2019 年 12 月)涵盖了截至本文件内页所示日期(称为合并日期)的所有修改、后续批准和修订。表 A 是截至合并日期仍未解决的推迟和转交的列表。计划中已被推迟或转交的部分用星号 (*) 表示,后跟参考符号。表 B 包含市议会考虑的《官方计划》(1994 年)的修订列表及其截至合并日期的状态。办公室合并是为了方便起见而准备的。为了准确参考,读者应查阅经地区批准的法律文件,即《官方规划》(1994 年)及其修正案的副本原件,已提交给伯灵顿市文员部,地址为安大略省伯灵顿市布兰特街 426 号,邮编 L7R 3Z6。这些说明性说明不构成《规划法》规定的官方规划的一部分。
• 通过与市场参与者合作实施三个大规模示范项目,展示 TSO/DSO 之间的协调将在多大程度上为消费者带来更便宜、更可靠、更环保的电力供应。 • 定义和测试一套标准化产品和相关的电网服务关键参数,包括资产的预订、激活和结算流程。 • 指定和开发 TSO-DSO-消费者合作平台,从示范站点的必要构建模块开始。这些组件将为泛欧洲市场的互操作发展铺平道路,使所有市场参与者都能提供能源服务,并为提供电网服务的消费者开辟新的收入来源。
希灵登是伦敦第二大行政区,从北到南总长约 20 公里,部分地区为半乡村地区,道路可能没有路灯,蜿蜒曲折,崎岖不平,比伦敦市中心的行政区更窄。在这些行政区,骑自行车往返城镇中心通常会走更宽、路灯充足、更平坦的道路,而且距离更短。这些道路网络的复杂性和更高的拥堵程度往往