“如果您可以制造一种可能影响特定枢纽基因的药物,那么您可能会影响周围的数百个其他基因,并看到宏观效果,”神经科学系副教授,电气和计算机工程系的副教授,大学的BIO5研究所成员。“例如,这可能是一种可能减慢阿尔茨海默氏病的药物。”
摘要在年轻动物中神经系统的关键目标是学习运动技能。Songbirds 11学会唱歌为少年,提供了一个独特的机会来识别技能12获取的神经相关性。先前的研究表明,在歌曲获取过程中,声带皮层的尖峰速率可变性大大降低了13个,这表明从基于速率的神经控制到14的过渡到14毫秒至少的运动代码,已知是成人人声表现的已知。通过15区分尖峰模式的合奏是如何通过皮质神经元(“神经16词汇”)和尖峰模式与歌曲声学(“神经代码”)之间的关系17在歌曲获取过程中的变化,我们量化了18个少年bengence bengengale bengengale bengengale bengengalesection of to song ockisition。我们发现,尽管率变异性的预计会下降(峰值词汇的19个学习相关变化),但最年轻的20名歌手中神经代码的精度与成年人相同,峰值正时的1-2毫秒变化转移到21个量子上,差异很大。相比之下,较长的时间标准的爆发率失败了22,会影响少年动物和成年动物的运动输出。在变化的尖峰速率和行为可变性水平上,始终存在23毫秒的电动机编码24表明,与学习相关的皮质活动的变化反映了大脑更改其尖峰25词汇以更好地匹配潜在的运动代码,而不是在26代码本身的准确性中匹配基础运动代码。27
新出现的新迁移路线的可能性大概是1)相关的健身收益和2)该路线首先出现的概率。有人提出,截然相反的“反向”迁移轨迹可能是令人惊讶的普遍性,如果这种途径是遗传的,则可以得出结论,因此,它们可以构成分歧迁移轨迹的快速发展。在这里,我们使用了欧亚黑色库(Sylvia Atricapilla;“ BlackCap”)响起的回收和地理定位器Tra jectories来调查最近进化的最近进化的北向秋季秋季候选路线,并伴随着快速的朝北冬季范围的扩张 - 可以通过每个人群人口传统的南方偏向偏向偏向偏移的逆转来解释。我们发现,向北的秋季移民被回收到轴线逆转所指定的位置的距离,而不是偶然的预期,这与新迁移途径的快速发展通过方向变化一致。我们建议,轴逆转的出乎意料的可能性可能解释了为什么鸟类迅速和发散的冬季范围,并建议在表征基因组成的基因组成部分迁移时,了解迁移方向的编码至关重要。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年1月20日。 https://doi.org/10.1101/2024.01.17.576037 doi:Biorxiv Preprint
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月2日发布。 https://doi.org/10.1101/2024.01.02.573934 doi:biorxiv Preprint
摘要 行为是经验和先天倾向的结合。随着大脑的成熟,大脑的细胞、网络和功能特性会发生重大变化,这可能是由于感官体验以及发育过程造成的。在正常的鸟鸣学习中,神经序列会出现以控制从导师那里学到的歌曲音节。在这里,我们通过延迟接触导师来消除导师经验和发展在神经序列形成中的作用。使用功能性钙成像,我们在没有导师的情况下观察神经序列,表明导师经验对于序列的形成不是必需的。然而,在接触导师之后,预先存在的序列可以与新的歌曲音节紧密相关。由于我们推迟了辅导,只有一半的鸟在接触导师后学会了新的音节。未能学习的鸟是前辅导神经序列最“结晶”的鸟,也就是说,已经与它们(未经辅导的)歌声紧密相关。