数据可用性。在一系列按卫生服务区域划分的疾病特定死亡率的分级统计图中,他们通过双阴影线表示“稀疏数据”。这包括“平行的白色和黑色阴影线,[这]允许在浅色和深色上看到阴影线。” 分级统计图颜色足够清晰,阴影线足够窄,以至于人们可以轻松感知两个层(数据和元数据)。在选择阴影技术之前,在制作此地图集时考虑了许多方法,包括灰度、纹理、点和点符号(如星号)(MacEachren 和 Brewer,1995 年)。阴影线可以有效地指示存在质量问题(例如稀疏数据),但对于更复杂的问题来说不太实用,因为使用多种宽度或颜色的阴影会使主地图混乱。
前言 2000 年 11 月,美国国会图书馆主办了新千年书目控制两百周年会议,召集编目和元数据社区的权威人士,讨论涉及改进网络资源发现和访问的突出问题。该会议提出的建议之一是提供适当的培训和继续教育,以改进对选定网络资源的书目控制,具体包括:1) 确定和加强图书馆编目员的核心能力;2) 设计和开展培训,以提高从业人员的思维方式和价值观、解决问题、运营、管理和信息技术技能;3) 促进对描述和管理电子和数字资源的元数据标准的理解、使用和改进。2001 年 8 月,美国图书馆协会的图书馆收藏和技术服务协会 (ALCTS) 被任命为规划和实施该建议的牵头组织。
元宇宙将物理现实与虚拟现实融为一体,使人类及其虚拟形象能够在由高速互联网、虚拟现实、增强现实、混合现实和扩展现实、区块链、数字孪生和人工智能 (AI) 等技术支持的环境中进行交互,所有这些技术都通过几乎无限的数据得到丰富。元宇宙最近作为社交媒体和娱乐平台出现,但扩展到医疗保健领域可能会对临床实践和人类健康产生深远影响。作为一群学术、工业、临床和监管研究人员,我们发现元宇宙方法在医疗保健领域的独特机会。“医疗技术和人工智能”(MeTAI) 的元宇宙可以促进基于人工智能的医疗实践的开发、原型设计、评估、监管、转化和改进,尤其是医学影像引导的诊断和治疗。在这里,我们介绍了元宇宙的使用案例,包括虚拟比较扫描、原始数据共享、增强监管科学和元宇宙医疗干预。我们讨论了 MeTAI 元宇宙生态系统的相关问题,包括隐私、安全和差异。我们还确定了协调努力构建 MeTAI 元宇宙的具体行动项目,以提高医疗质量、可及性、成本效益和患者满意度。
摘要:元时间最近在光学研究中占据着突出性,提供了独特的功能,可用于成像,束形成,全息,偏光法等,同时保持设备尺寸较小。尽管已经在文献中对大量基本的跨表面设计进行了彻底的研究,但随着跨面相关论文的数量仍在快速增长,因为跨表面研究现在正在扩展到相邻的领域,包括计算成像,增强现实,增强和虚拟的现实,自动化,自动化,自动化,量子,量子,数量,量子,量和替代量。同时,元信息在更紧凑的光学系统中执行光学功能的能力引发了各种行业的强大而不断增长的兴趣,这些行业从低成本以低成本的光电系统中的微型化,功能高的光学组件的可用性中受益匪浅。这为Metasurfaces领域创造了一个真正独特的机会,从而使科学和工业产生影响。该路线图的目的是标志着元图研究的“黄金时代”,并定义了未来的方向,以鼓励科学家和工程师推动跨境领域的研究和发展,以实现科学卓越和广泛的工业采用。关键字:元图,金属,平面光学,逆和拓扑设计,计算成像,可调式跨面,新概念,新兴材料平台,大规模纳米构造,Metasurface应用
我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。
希望在相同条件下的替代反应也适用于相应的酯。经常发生在生活中,现实恰好有些不同。用liALH 4减少酯1仅得到酒精2(方案2)。根本没有观察到所需的3-氧化脱蛋白[3.1.1]七烷1a的形成。酒精2在室温下(方案2,条目1)也不在加热下(条目2),并未将其异构化为1a。在最后一个绝望的举动没有特别希望的情况下,我们试图在刘易斯酸催化下进行异构化。幸运地,异构化确实在室温下(3-7)在室温下以三氟烷酸酯,盐酸水和磷酸的形式进行了非常平稳的进行,从而导致所需化合物1a的形成。在硼三氟醚的实验中,分离产物1a的产量为97%。
沉浸式计算机生成环境(“元宇宙”)将如何影响数字经济中的服务?虚拟世界的投资增长迅速。然而,这项技术仍未实现完全沉浸式的体验。尽管有夸张的预测,但各种指标显示,过去两年人们的兴趣有所下降。虽然一些用例显示出前景(例如游戏、教育、医疗保健),但其他用例似乎明显是噱头(例如虚拟银行分支机构、土地投机)。如果元宇宙真的成功了,它可能意味着:(i)可贸易部门和非可贸易部门之间的界限变得模糊,(ii)跨境经济一体化程度更高,(iii)对支付服务有新的要求。原则上,零售快速支付系统、零售中央银行数字货币或代币化存款可以设计为支持元宇宙中的服务。为了防止虚拟环境和货币变得支离破碎并被强大的私营公司所主导,公共政策需要支持高效、可互操作的支付,并在数据隐私、数字所有权和消费者保护方面提供明确的标准。
无线体域网络 (WBAN) 通过提供非接触式测量和远程数据分析,在很大程度上改善了医疗保健行业。然而,遇到的挑战主要是能量耗尽的情况,这在很大程度上导致网络寿命缩短。这项工作提出了一个有效的模型,以提供节能路由和增强的能量收集机制,以提高网络寿命。蚁群优化 (ACO) 方法已扩展为包括一个考虑多种因素的适应度函数,这是路由模型的基础。这些过程确保有效路由,从而节省能源,进而延长网络寿命。所提出的模型的性能已与该领域现有的最先进模型进行了比较。与基于元启发式的模型、基于协作能量效率和优先级的可靠路由协议与网络编码 (CEPRAN) 的比较表明了所提出工作中使用的能量收集机制的效率。与使用能量收集机制的模型相比,结果显示网络寿命更长,表明所提出的路由机制的效率。
HMPV和SARS-COV-2(COVID-19病毒)与所有年龄段的人都引起呼吸道疾病并不密切相关。通常与HMPV相关的症状包括咳嗽,发烧,鼻塞和呼吸急促。这些也是感染SARS-COV-2的人所显示的症状。这两种病毒很可能是通过咳嗽,打喷嚏和亲密个人接触的分泌物从感染者传播到他人的。它们还通过接触具有病毒在其上的物体或表面,然后触摸嘴,鼻子或眼睛的表面传播。
ecent年份已经看到了衍射光学的复兴,这是由于纳米制度的纳米化阵列的进步,具有高精度,合理的吞吐量和相对易于生产的纳米阵列的纳米化阵列。这些发展开辟了一个所谓的平面光学器件的新时代,其关键组件称为Metasurfaces(由光学上薄的散射器组成的二维结构,例如次波长大小的天线),越来越多地用于替换整个传统光学元件的整体组合1 - 9。这些设备可以实现有效的梁转向,光学极化的局部控制以及光10-14的发射和检测。metasurfaces具有独特的功能,可以完全控制子波长度15中的光。包括对复杂衍射的波长和极化选择性控制。此外,元信息可以使新物理学和一系列现象与散装光学或3D超材料中可以实现的现象明显不同。这样一个例子是一般的反射和折射定律,可以通过使用带有规定的相位梯度的天线阵列来将元时间用于重定向,同时确保完全控制幅度和相位的前所未有的设计灵活性。元面包还可以量身定制近场响应,这在处理光源和探测器时至关重要,从而实现了完美的吸收,发射增强和光 - 物质相互作用的详细设计。metaSurfaces具有巨大的实现这些状态的潜力。metasurfaces现在已成为经典光学的主食,并且越来越有兴趣将扁平光子学启用的新型功能带入量子光学的领域16。量子光学技术需要单个光子,纠缠光子和其他类型的非古典光以及更新的检测方法的来源。量子状态可以基于不同程度的光自由度极化,方向和轨道角动量。,我们首先将注意力集中在经典光学设备(梁拆分器)上的两个独立光子的量子干扰17、18的演示中,这允许纠缠操作 - 量子光学领域的里程碑。但是,光束分离器是一种只能改变其反射率的简单设备,因此没有太多功能性。metasurfaces具有更广泛的功能,并且具有很大的操纵单光子并产生各种品种的潜力
