俄罗斯的担忧既具有侵略性,又具有防御性。它担心西方国家,尤其是土耳其在黑海海峡的影响力日益扩大,这可能会使黑海变成“北约湖”。1 莫斯科希望确保任何新的东西方能源走廊都不能绕过俄罗斯或削弱其对石油和天然气出口的控制。黑海海峡是俄罗斯现在和未来的关键战略海域。俄罗斯认为它可以在黑海海峡几乎不受惩罚地行动,建立并投射能力到高加索、巴尔干、中东和其他地区。克里姆林宫在黑海海峡不断增强的军事能力实际上已经包围了土耳其,同时使俄罗斯海军能够在东地中海开展行动,并支持叙利亚的巴沙尔·阿萨德政权和利比亚自封的利比亚国民军指挥官哈利法·哈夫塔尔将军。2 克里姆林宫的这些行动还“武器化”了难民,特别是来自叙利亚的难民,对欧洲的凝聚力和预算产生了巨大的负面影响。3
旋转黑洞存储旋转能,可以提取。当黑洞浸入外部提供的磁场中时,重新连接了巨石内的磁场线可以产生负能量(相对于无穷大)粒子,而这些颗粒落入黑洞事件地平线中,而其他加速的颗粒逃脱了从黑洞中窃取能量的颗粒。我们分析表明,当黑洞旋转高(无量纲旋转A〜1)并且血浆被强磁化时,可以通过磁重新连接进行能量提取(等离子体磁化σ0> 1 = 3)。允许能量提取的参数空间区域取决于等离子体磁化和重新连接磁场线的方向。对于σ0≫1,发现被最大旋转黑洞吞咽的减速等离子体的无穷大的渐近负能量是ϵ∞ -≃-效应σ0= 3 p。逃脱到无穷大的加速等离子体,将黑洞能量渐近为每个焓ϵ∞dimplotighotilefforkloicking3σ0p。我们表明,通过逃逸等离子体从黑洞中提取的最大功率为p max extri〜0。1 M 2效应σ0P W 0(在此,M是黑洞质量,W 0是无碰撞等离子体状态的等离子体焓密度),碰撞状态低一个数量级。能量提取会在〜1时引起黑洞的显着染色。发现通过磁重连接在Ergosphere中的血浆能量过程的最大效率被发现为ηmax≃3= 2。由于在此处提出的场景中应间歇性地发生Ergosphere中的快速磁重新连接,因此预计黑洞中几个重力半径内的相关发射有望表现出爆发性质。
读到这里,读者可能会抱怨,如果引力中的量子效应只在黑洞奇点附近才重要,那么对于生活在黑洞外进行实验的观察者来说,它们可能没有任何意义。然而,斯蒂芬·霍金在 1974 年宣布了他的研究结果 [7, 8],震惊了物理学界。他发现,黑洞视界附近的量子效应会导致事件视界的半径不断减小并最终消失。正如我们上面提到的,黑洞的视界半径是宏观尺寸(对于质量等于地球质量的黑洞,视界半径为 9 毫米,对于质量等于太阳质量的黑洞,视界半径为 3 千米),我们完全理解这些宏观长度尺度上的物理定律。这就是为什么霍金的结果对事件视界的确切性质不敏感。
需要λ<0显然是过于限制的假设,即我们希望适用于宇宙的想法,但另一方面,我们很快会看到某种非平凡的假设是必要的:至少在较低的维度下,确实存在与全球对称性的量子引力理论!
这封信的目的是探索仪表场之间的关系,这是我们对基本互动的理解和量子纠缠的基础。为此,我们调查了SU(2)量规场的情况。首先认为SU(2)仪表范围的固体自然与最大纠缠的两个粒子状态相关。然后,我们提供了一些证据,表明可以从最大纠缠的两个粒子状态的转换特性中推导出这种规范的概念。这种新的见解揭示了规格场与自旋系统之间的可能关系,并有助于理解张量网络(例如MERA)和循环量子重力中考虑的旋转网络状态之间的关系。因此,我们的结果证明在新兴的纠缠/重力二元性的背景下是相关的。
在1976年引入信息损失问题的四十年中,这是一个目前的想法,现在,在2020年,它已经解决了一个方面。这方面涉及通过在最终辐射状态下执行的操作从黑洞内部恢复初始插入物质状态。Arriving at the solution involved integrating key historical and recent works such as Page's 1993 study of entropies in black hole evaporation, Ryu-Takayanagi's 2006 holographic area relation, Faulkner, Lewkowycz and Maldacena's and Engelhardt and Wall's extensions to the area relations in 2013 and 2015 respec- tively, Penington's work on entanglement wedges in 2019 and Almheiri,Mahajan,Maldacena和Zhao于2019年在岛上的猜想中的工作。本论文回顾了这些选定的作品。
摘要:最近有几篇论文表明,纠缠楔重构与 AdS/CFT 中黑洞蒸发的幺正性之间存在密切的关系。然而,这些论文的分析有一个相当令人费解的特点:所有计算都是使用体动力学进行的,而体动力学本质上是霍金用来预测信息丢失的动力学,但应用纠缠楔重构的思想似乎表明佩奇曲线与信息守恒一致。为什么同一模型中的两个不同计算会给出不同的佩奇曲线答案?在本文中,我们提出了一对新模型来澄清这种情况。我们的第一个模型给出了幺正黑洞蒸发的全息图解,其中霍金辐射的类似物按预期净化自身,这种净化由纠缠楔分析重现。此外,光滑的黑洞内部一直持续到蒸发过程的最后阶段。我们的第二个模型对体积演化导致信息丢失的情况给出了另一种全息解释:与迄今为止提出的模型不同,这种体积信息丢失可以通过纠缠楔分析正确再现。这说明量子极值表面在某种意义上是运动学的:它们计算的熵的时间依赖性取决于体积动力学的选择。在这两个模型中,都无需考虑体积量子校正:经典极值表面足以完成这项工作。我们认为,我们的第一个模型是对蒸发黑洞实际发生情况的正确类比,但我们也强调,任何信息问题的完全解决都需要了解非微扰体积动力学。
摘要:量子力学与广义相对论之间存在着不可调和的矛盾,导致了黑洞信息悖论和防火墙悖论。本文探讨了这两个悖论产生的原因,并提出了一些可能的解决办法。信息悖论是想探究信息落入黑洞后是否真的会丢失,本文简要介绍了马尔达西那对偶原理、黑洞互补原理以及其他解决该悖论的模型。防火墙悖论是想探究穿过黑洞视界的物体是否会被防火墙摧毁,计算复杂性的引入和ER=EPR模型可能有助于解决这一悖论。此外,如果防火墙真的存在,引力波撞击防火墙的反弹可能有助于探测到它。总的来说,黑洞悖论的解决可能为我们统一量子力学和广义相对论提供一种可能的途径。
1 马克斯普朗克量子光学研究所,Hans-Kopfermann-Strasse 1, 85748 Garching,德国 2 哥本哈根大学数学科学系 QMATH,Universitetsparken 5,2100 Copenhagen,丹麦 3 微技术和纳米科学,MC2,查尔姆斯理工大学,SE-412 96 Göteborg,瑞典 4 滑铁卢大学应用数学系,滑铁卢,安大略省,N2L 3G1,加拿大 5 巴西物理研究中心 (CBPF),里约热内卢,CEP 22290-180,巴西 6 都柏林大学学院数学与统计学院,Belfield,都柏林 4,爱尔兰 7 滑铁卢大学量子计算研究所,滑铁卢,安大略省,N2L 3G1,加拿大 8 滑铁卢大学物理与天文系加拿大安大略省滑铁卢市滑铁卢市 N2L 3G1 9 加拿大安大略省滑铁卢市 Caroline Street N 31 号圆周理论物理研究所 N2L 2Y5