在药物发育临床试验中使用Lewy身体诊断痴呆症的共识指南。滴虫剂geriatr cogn Disord2016 ;41:55-67。 6)Matsunaga S,Kishi T,
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
地址通信到:HSING-CHANG NI,精神病学系,Linkou Chang Gung Gung Memorial Hospital,No.5,Fusing
1. Yiannopoulou KG,Papageorgiou SG。阿尔茨海默病的当前和未来治疗:最新进展。J Cent Nerv Syst Dis。2020;12:1179573520907397。2. Krahn AI,Wells C,Drewry DH,Beitel LK,Durcan TM,Axtman AD。定义神经激酶组:针对神经退行性疾病的小分子药物发现策略和机会。ACS Chem Neurosci。2020;11:1871-1886。3. Cummings J,Lee G,Ritter A,Sabbagh M,Zhong K。阿尔茨海默病药物开发渠道:2020。Alzheimers Dement(纽约)。2020;6:e12050。 4. https://www.nia.nih.gov/research/amp-ad 5. Hodes RJ、Buckholtz N. 加速药物伙伴关系:阿尔茨海默病 (AMP-AD) 知识门户通过开放数据共享帮助发现阿尔茨海默病药物。Expert Opin Ther Targets。2016;20:389-391。 6. Mullard A. NIH 启动开放科学阿尔茨海默病计划。Nat Rev Drug Discov。2019;18:895。 7. Lee WH. 开放获取靶标验证是加速药物发现的更有效方法。PLoS Biol。2015;13:e1002164。 8. Frye SV. 化学探针的艺术。Nat Chem Biol。2010;6:159-161。 9. Arrowsmith CH、Audia JE、Austin C 等人。化学探针的前景和危险。自然化学生物学。2015;11:536-541。10. Wells CI、Drewry DH、Pickett JE 等人。开发一种针对多效性激酶 CK2 的强效选择性化学探针。细胞化学生物学。2021;28:546-558。11. Wells C、Couñago RM、Limas JC 等人。SGC-AAK1-1:一种针对 AAK1 和 BMP2K 的化学探针。ACS Med Chem Lett。2019;11:340-345。12. Asquith CRM、Berger BT、Wan J 等人。SGC-GAK-1:一种针对细胞周期蛋白 G 相关激酶(GAK)的化学探针。J Med Chem。 2019;62:2830-2836。13. Picado A、Chaikuad A、Wells CI 等人。暗激酶 STK17B 的化学探针通过独特的 P 环构象获得其效力和高选择性。J Med Chem。2020;63:14626-14646。14. Brown PJ、Müller S。用于表观遗传靶标的开放获取化学探针。未来医学化学。2015;7:1901-1917。15. Barnash KD、Lamb KN、Stuckey JI 等人。通过靶标类别定向组合重利用进行 Chromodomain 配体优化。ACS Chem Biol。2016;11:2475-2483。 16. Elkins JM、Fedele V、Szklarz M 等人。已发表激酶抑制剂集的综合表征。Nat Biotechnol。2016;34:95-103。17. Drewry DH、Wells CI、Andrews DM 等人。蛋白激酶公共化学基因组学集及征文进展。PLoS One。2017;12:e0181585。18. Drewry DH、Wells CI、Zuercher WJ、Willson TM。极端开放科学视角:公司无限制共享化合物。SLAS Discov。2019;24:505-514。19. Wells CI、Al-Ali H、Andrews DM 等人。激酶化学基因组集 (KCGS):用于激酶脆弱性识别的开放科学资源。Int J Mol Sci。2021;22:566。20. Müller S、Ackloo S、Arrowsmith CH 等人。为开放科学捐赠化学探针。Elife。2018;7:e34311。21. 勃林格殷格翰国际公司。https://opnme.com/ 22. Basu A、Bodycombe NE、Cheah JH、等人。一种用于识别小分子靶向的癌症遗传和谱系依赖性的交互式资源。细胞。2013;154:1151-1161。23. Clemons PA、Bittker JA、Wagner FF 等人。筛选中使用信息集:关于识别新探针的有效策略的观点。SLAS Discov。2021:24725552211019410。24. Antolin AA、Tym JE、Komianou A、Collins I、Workman P、Al-Lazikani B。客观、定量、数据驱动的化学探针评估。细胞化学生物学。2018;25:194-205。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年11月18日。 https://doi.org/10.1101/2024.11.16.623962 doi:Biorxiv Preprint
患有囤积症 (HD) 的患者难以丢弃物品,并且倾向于囤积大量物品,无论其实际价值如何,使生活区变得杂乱无章 (Timpano 等人,2013)。囤积症状最初被认为是强迫型人格障碍的诊断标准或强迫症 (OCD) 的症状维度。然而,大多数患有强迫症的人并没有报告明显的囤积行为 (Pertusa 等人,2010),而患有 HD 的人通常不符合强迫症的其他症状标准 (Frost 等人,2012)。事实上,囤积和强迫症症状显示出较弱的相关性,在因子分析中,它们通常被归类为不同的维度 (Wu & Watson,2005)。因此,在《精神障碍诊断和统计手册》第五版(DSM-V)(APA,2013)中,强迫性囤积被视为强迫症谱系中的一种独立诊断。然而,HD 的病理生理学在很大程度上是未知的。大多数评估强迫性囤积神经相关性的研究都评估了强迫症患者的囤积症状(从维度角度)(Mataix-Cols 等人,2004 年;Harrison 等人,2013 年),或比较了有强迫性囤积和无强迫性囤积的强迫症样本(Saxena 等人,2004 年;An 等人,2009 年)。因此,它们不能代表没有表现出强迫症状的 HD 患者。只有最近的研究将没有强迫症的囤积者与健康对照者(HC)或没有囤积症状的强迫症患者进行了比较(Tolin 等人,2009 年,2012 年)。然而,这些研究使用的任务旨在在囤积相关决策(即丢弃物品)过程中触发复杂的情绪。因此,由于这些患者整体上缺乏激活,因此它们无法与强迫症进行有意义的比较(Tolin 等人,2012 年)。为了从神经生物学角度证实亨廷顿舞蹈症和强迫症之间的临床区别,重要的是比较两组患者在执行与强迫症病理生理相关的任务时的行为和大脑激活特征。认知控制不佳在强迫症的病理生理模型中起着重要作用,并被认为是该疾病的潜在内表型(Chamberlain 和 Menzies,2009 年)。抑制功能和注意力转换受损确实可能是强迫观念和强迫行为控制不佳的根本原因(Snyder 等人,2015 年)。已知这些执行功能由前额叶、顶叶和纹状体区域支持(Norman 等人,2016 年),这些区域在当前的强迫症神经生物学模型中处于核心地位,是皮质-纹状体-丘脑-皮质 (CSTC) 回路的一部分(Menzies 等人,2008 年;van den Heuvel 等人,2016 年)。此外,强迫症还具有过度绩效监控的特征,这可能是某些强迫症症状(例如重复检查)出现的原因(Harkin 等人,2012 年)。绩效监控与背外侧前额叶和前扣带皮层 (dlPFC 和 ACC) 有关 (Melcher 等人,2008),神经影像学研究一致报告称,在绩效监控期间,强迫症患者的 ACC 过度激活 (Melcher 等人,2008)。因此,评估这些神经认知领域的方案可以为进一步区分亨廷顿舞蹈症和强迫症提供启示。尽管如此,之前只有两项神经影像学研究重点比较了强迫症和亨廷顿舞蹈症之间执行功能障碍的神经相关性。第一项研究评估了 Go/No-Go 方案中的反应抑制和绩效监控 (Tolin 等人,2014),而第二项研究检查了这些相同的功能,还包括反应冲突任务 (即 Stroop) (Hough 等人,2016)。两项研究均未发现各组之间的绩效差异。在神经生物学层面,亨廷顿氏病患者在反应抑制过程中表现出与强迫症组相比明显的过度活跃,尽管研究结果的具体模式有所不同:从右中央前回的单个簇(Tolin 等人,2014 年)到
gengorobuna * carassius cuvieri○□○□□□□carassius sp○□●■做○□○□○□●■□丢失的鱼 *疑虑的anguillicaudatus○○○□cat鱼Rhinogobius sp○□○□●○□●○□○□□□■
Albert/ Albertina/ Alberta 可以制定计划,严格遵守时间表并深思熟虑。Rex 不喜欢想太多,喜欢行动。如果我们的 Rex “心情不好”,什么都行不通。这就是为什么睡眠、食物、运动都能让 Rex 平静下来。 启动动力 启动我们的动力从让 Rex 平静下来开始。Rex 关注我们做什么,而不是我们说什么。一旦我们开始做某事,Rex 通常会跟着做。这就是为什么锻炼中最困难的部分就是开始做这件事。 从您的学习优势开始 当我们开始做某事时,我们发现我们可以轻松完成,我们的动力就会增加。我们“一帆风顺”,可以避免拖延。通过在 www.mylearningstrengths.com 评估您的学习优势,您可以知道从哪里开始。获得完整的个性化学习成功计划可以让您采取行动并摆脱拖延。