资源受限的设备越来越多地使用,这些设备内存更少、计算资源更少、电源更少,这促使人们采用轻量级密码术来提供安全解决方案。ASCON 是 NIST 轻量级密码术竞赛的决赛入围者,GIMLI 是第二轮候选者。ASCON 是一种基于海绵函数的认证加密 (AE) 方案,适用于高性能应用。它适用于物联网 (IoT) 等环境,在这种环境中,大量非常受限的设备与高端服务器通信。缺点是可能出现统计无效故障攻击 (SIFA) 和子集故障分析 (SSFA) 等故障分析。GIMLI 也是一种基于海绵函数的 AE 方案,易受 SIFA 攻击。在这项工作中,我们修改了 ASCON 128a 和 GIMLI,利用元胞自动机 (CA) 的伪随机特性来防止这些攻击。我们分析并表明这些攻击不适用于增强密码。
2023年,美国国家标准技术研究所(NIST)宣布了Dobraunig,Eichlseder,Mendel和Schläffer设计的Ascon算法家族,为资源约束设备提供有效的密码解决方案。这个决定来自严格的多轮轻巧的加密标准化过程。该标准介绍了一个新的基于ASCON的对称键加密原始家族,旨在提供经过验证的加密,并具有相关数据(AEAD),哈希和可扩展输出功能(XOF)功能,即Ascon-Aead-Aead128,Ascon-Hash256,Ascon-Hash256,Ascon-Xof128,Ascon-Xof128,和Ascon-cxof128。ASCON家族的特征是基于轻质置换的原始词,并提供了可靠的安全性,效率和灵活性,使其非常适合资源受限的环境,例如物联网(IoT)设备,嵌入式系统和低功率传感器。当高级加密标准(AES)可能无法最佳性能时,将开发家庭提供可行的替代方案。该标准草案概述了Ascon-Aead128,Ascon-Hash256,Ascon-XOF128和Ascon-CXOF128的技术规格,并提供其安全属性。
shake128和shake256,以支持在调用XOF之前数据输出和完整数据输入的长度的实现。是指允许交错的吸收和挤压呼叫。我认为这将是一个很棒的补充,但应与有关域分离的需求以及一种或多种建议的参考解决方案的警告结合在一起。示例解决方案包括在眨眼和/或在shake-wrap和shake-bo和/或使用tag-(长度)价值以及频道中的tag-(长度)值中完成的单字节拖车的X Xorking四分位。(Sidenote:鉴于Ascon的SP仍在起草,在初始SP或潜在的随访SP中,允许Ascon-XOF的类似交错可能是有意义的。)
2018 年 8 月,NIST 启动了一项流程,以征集、评估和标准化轻量级加密算法,这些算法适用于当前 NIST 加密标准性能不可接受的受限环境。要求加密算法提供经过认证的加密和关联数据 (AEAD) 功能,以及可选的哈希功能。从那时起,密码社区就为最初 57 份提交的密码分析和不同平台(包括软件和硬件)的基准测试做出了贡献。10 个入围者于 2021 年 3 月 29 日选出,分别是:ASCON、Elephant、GIFT-COFB、Grain128-AEAD、ISAP、Photon-Beetle、Romulus、Sparkle、TinyJambu 和 Xoodyak。在本报告中,我们展示了对不同数据集执行的 NIST 统计测试的结果,这些数据集是从 NIST 轻量级标准化流程的入围者的所有可能的缩减轮次版本的输出生成的。实验的目的是提供另一个指标来比较每个候选者的轮数选择是保守还是激进。请注意,在 1999 年和 2000 年的高级加密标准选择期间以及 2011 年的 SHA-3 候选者中也进行了类似的分析。
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
深度学习模型的出现彻底改变了人工智能的领域,这是克里兹赫夫斯基等人2012年的胜利。在Imagenet大规模视觉识别挑战(ILSVRC)中的模型[1] [2]。这一突破标志着深度学习在图像和语音识别以及自然语言处理等领域的主导地位。大型语言模型(LLMS)的发展,例如Chatgpt [3],代表了自然语言处理的显着进步,到2023年,Chatgpt实现了超过1亿个全球用户群。在网络安全的动态场中,不断寻求创新的方法来增强网络防御。llms之类的Chatgpt在各种网络安全领域中发挥了作用,包括安全操作中心(SOC)和教育计划。socs在监视和应对网络事件中起着至关重要的作用,通过整合ChatGPT [4],可以增强能力。同样,网络安全教育领域也从Chatgpt [5]促进的互动学习经验中得到了好处。但是,网络攻击中LLM的潜在滥用是人们日益关注的领域。LLM(例如ChatGpt)产生令人信服的句子,图像和程序源代码的能力为它们在信息攻击中的概述提供了途径,例如信息收集[6],网络钓鱼[7]和恶意软件创建[8]。在对称键密码学领域中,LLM在生成密码AES,CHAM [9]和ASCON [10]的程序源代码方面表现出了希望。差异性隐式分析[11]和线性隐性分析[12]在分析对称键块密码方面一直是关键的。最近的研究利用了混合整数线性编程(MILP)和满足能力问题(SAT)来增强这些分析[13] [14] [15] [16] [17] [17] [18]。由于使用MILP或SAT的方法不仅需要密码分析的知识,而且还需要高度编程技能,因此初学者有障碍可以克服。从讨论的观点来看,很明显,Chatgpt-4有可能大大降低密码分析领域的初学者的障碍。通过简化学习曲线,