Design Methods of Signal Processing Systems: • Optimization of signal processing algorithms • Compilers and tools for signal processing systems • Algorithm-to-architecture transformation • Dataflow-based design methodologies Software Implementation of Signal Processing Systems: • Software on programmable digital signal processors • Application-specific instruction-set processor (ASIP) architec- tures and systems • SIMD, VLIW, and multi-core CPU architectures • GPU-based massively parallel implementation Hardware Implementation of Signal Processing Sys- tems: • Low power/complexity signal processing circuits & applica- tions • FPGA and reconfigurable architecture-based systems • System-on-chip and network-on-chip • VLSI for sensor network and RF identification systems • Quantum signal processing • Neuromorphic computing
• 不动产规划与分析系统 (RPLANS),是设施需求的记录数据库 • 陆军驻扎和安装计划 (ASIP),记录特定位置需要设施支持的当前和未来组织 • 部队管理系统 (FMS) Web,包含描述和定义陆军单位结构的组织和设备表 (TOE) 以及分布和分析表 (TDA) • 总部安装和信息系统 (HQIIS),汇总和记录不动产清单和不动产位置 • 安装状态报告 (ISR) – 第 I 部分,基础设施,是当前评估条件和充分性的工具 • 陆军建设者,全面实施后,将记录陆军基础设施的维持和现代化要求 • 主动不动产交互式空间管理系统 (PRISMS),企业空间管理和设施利用工具
摘要 本文介绍了 F-35 的结构预测和健康管理系统。本文介绍了 F-35 计划,确定了关键的工业合作伙伴、当前的全球客户群,并强调了该计划的规模。然后,本文开始描述数据在系统中移动的方法,并将涉及数据跨越国界的问题以及该计划如何解决数据主权问题。本文的主体部分描述了该系统为满足严格的飞机结构完整性计划 (ASIP) 要求而提供的功能。本文深入介绍了机载硬件和软件功能,并简要说明了这些功能存在的原因,然后描述了系统记录的数据,最后描述了用于维护机身结构完整性的机外结构健康管理能力。本文还深入介绍了系统所采用的跟踪方法,并涉及系统所采用的功能如何在整个生命周期中得到开发和维护。本文最后解释了如何定制系统以满足特定客户要求,包括分析选项和用户可选择的方法来处理缺失数据。
摘要。SHA-3 被认为是最安全的标准哈希函数之一。它依赖于 Keccak-f[1 600] 置换,该置换对 1 600 位的内部状态进行操作,主要表示为 5 × 5 × 64 位矩阵。虽然现有实现通常以 32 位或 64 位的块顺序处理状态,但 Keccak-f[1 600] 置换可以通过并行化加速。本文首次通过 32 位和 64 位架构上的自定义向量扩展探索基于 RISC-V 的处理器中 Keccak-f[1 600] 并行化的全部潜力。我们分析了由五个不同步骤映射组成的 Keccak-f[1 600] 置换,并提出了十条自定义向量指令来加速计算。我们在 SystemVerilog 中描述的 SIMD 处理器中实现了这些扩展。我们将我们的设计性能与基于矢量化专用指令集处理器 (ASIP) 的现有架构进行了比较。我们表明,得益于我们精心选择的自定义矢量指令,我们的设计性能优于所有相关工作。
1 BAE Systems,英国,iain.hebden@baesystems.com 2 BAE Systems,美国,Anthony.m.crowley@baesystems.com 3 Lockheed Martin,美国,wayne.black@lmco.com 摘要 本文介绍了 F-35 的结构预测和健康管理系统。本文介绍了 F-35 项目,确定了主要的工业合作伙伴、当前的全球客户群,并强调了该项目的规模。然后,本文开始描述数据在系统中移动的方法,并将涉及数据跨越国界的问题以及该项目如何解决数据主权问题。本文的主体部分描述了该系统为满足严格的飞机结构完整性计划 (ASIP) 要求所提供的功能。本文深入介绍了机载硬件和软件功能,并简要说明了这些功能存在的原因,然后介绍了系统记录的数据,最后介绍了用于维护机身结构完整性的机外结构健康管理功能。本文还深入介绍了系统采用的跟踪方法,并涉及系统在整个生命周期内如何开发和维护所采用的功能。最后,本文解释了如何定制系统以满足特定客户的要求,包括分析选项和用户可选择的方法来处理缺失数据。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。
本报告讨论了 VLCCS 和 ULCCS 的先进海洋结构完整性计划 (MSIP) 的开发。作为本研究的一部分,审查了商用和军用飞机的机身结构完整性计划 (ASIP),并为本报告中描述的先进 MSIP 提供了基础。本研究重点强调了在该行业实施先进 MSIP 的实用性。解决了技术和组织发展问题。该研究得出结论,先进的 MSIP 目前在该行业的掌握之中。使先进 MSIP 成为现实所需的关键技术发展包括结构设计(腐蚀和疲劳耐久性)、检查、维护和维修以及信息系统(生命周期、全行业)的改进。使先进的 MSIP 成为现实所需的关键组织发展包括资源(资金、人力)的充分分配、MSIP 目标和职责的明确、高可靠性组织的建立以及全行业信息和通信系统的建立。本报告的章节包括 1) 简介,2) 机身结构完整性计划,3) 船舶结构完整性计划,4) 结构设计,5) 检查、维护和维修,6) 信息系统,7) 替代方案评估,以及 8) 未来发展。I 1S。分发声明可从以下位置获得:17。关键词
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性程序 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择了机翼根部,因为它最有可能出现疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果通过数值结果进行了验证。结论是,根据疲劳寿命循环,机翼根部结构状态不会受到严重损伤,无论是通孔还是贯穿侧裂纹,其失效时间都约为30至100年。因此,其结构寿命可以延长。研究成果将对延长飞机机翼的结构寿命产生重要影响。
ABES 修正预算估计提交 ACU 航空电子计算机单元 AD 现役 AEF 航空航天远征军 AEW 航空航天远征联队 AFMSS 空军任务支援系统 AFRC 空军预备队司令部 AOR 责任区 AR 减员预备队 ASIP 飞机结构完整性计划 BAI 备份库存 BLOS 超视距 C2 指挥与控制 C3 指挥、控制与通信 C3I 指挥、控制、通信与信息 CALCM 常规空射巡航导弹 (AGM-86C) CAP 战斗空中巡逻 CAS 近距空中支援 CB 测试编码 (OT&E) CC 战斗编码 CDU 控制显示单元 CEM 综合效应弹药 (CBU-87) CINC 总司令 CONOPs 作战概念 CONUS 美国本土 DCA 防御性防空 DEAD 摧毁敌方防空系统 DEC 数字发动机控制 DoD 国防部DT&E 开发测试和评估 DTU 数据传输单元 EA 电子攻击 ECM 电子对抗 EHF 极高频 EP 电子防护 EI 测试编码(DT&E) FOL 前方作战位置 FSA 未来攻击机 FYDP 未来几年国防计划 FY 财政年度 GATM 全球空中交通管理系统 GMTI 地面移动目标指示器
[1] E.H. Baalbergen, E. Moerlan, W.F.Lammen, P.D.Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] A.J.de Wit, W.F.Lammen, H.S.Timmermans, W.J.Vankan, D. Charbonnier, T. van der Laan, P.D.Ciampa (2019) 飞机供应链的协同设计方法:多级优化。NLR-TP-2019-202。[3] W.F.Lammen, P. Kupijai, D. Kickenweitz, T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。[4] E. Amsterdam, J.W.Wiegman, M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] F.P.Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020- 415。[6] F.P.Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] F.P.Grooteman, E. Lee, S. Jin, M.J. Bos (2019) 极限载荷系数降低。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[8] E. Amsterdam, F.P.Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。[9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳裂纹扩展速率的现象学模型。待提交。[10] W.J.Vankan, W.M.van den Brink, R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。[11] J.W.van der Burg, B.B.Prananta, B.I Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。[12] J. van Muijden, B.B.Prananta, R.P.G.Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans, B.B.Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。NLR-TP-2019-368。[15] L. Paletti, W.M.[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。[16] J.C. de Kruijk (2018) 使用机器人技术实现复合材料自动化制造可降低成本、交货时间和废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] W.M.van den Brink、R. Bruins、C.P.Groenendijk、R. Maas、P. Lantermans (2016) 复合热塑性水平稳定器扭力箱的纤维引导蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合格栅加固板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲会议上发表。[19] M.H.Nagelsmit、C. Kassapoglou、Z. Gürdal (2010) 一种用于提高损伤容限的新型纤维放置架构。NLR-TP-2010-626。[20] A. Clarke、R.J.C.Creemers, A. Riccio, C. Williamson (2005) 全复合材料耐损伤翼盒的结构分析与优化。NLR-TP-2005-478。