在开放量子系统范式中,研究了具有反射边界的时空中真空涨落无质量标量场与循环加速原子耦合时的量子相干性动力学,推导出了系统演化的主方程。结果表明,在没有边界的情况下,真空涨落和向心加速度总是会导致量子相干性降低。然而,有了边界,标量场的量子涨落发生了改变,使得量子相干性比没有边界的情况有所增强。特别地,当原子非常靠近边界时,虽然原子仍然与环境相互作用,但它表现得就像一个封闭系统,量子相干性可以免受真空涨落标量场的影响。
根据应用选择(金融、制药、物流、可再生能源),将使用优化和机器学习等技术,其中整个过程或部分过程将适应中性原子量子计算机的计算。目前,有使用中性原子进行优化和机器学习的算法。每个项目都旨在改进现有算法或提出替代算法和方法,以提高速度、所需的量子资源、步骤数或结果的准确性。
的确,受限的金属原子显示宿主系统费米水平附近的局部原子状态。这些状态,无论是填充还是空,都可以分别有利于氧化或还原化学过程。出现的问题是:(i)SAC的化学活性主要取决于被困的金属原子的类型,还是由二二剂GR层中的金属限制来决定,这意味着金属本身的性质不太相关,并且(ii)底层金属是否扮演着作用。回答这些问题对于设计基于智能SAC的系统至关重要,因为它需要理解有助于系统反应性的所有因素,从而确定具有更大意义的人,从而适当地指导材料准备。遵循此流,在我们最近的工作中,[31]我们成功创建并彻底地表征了基于GR的系统,其中单个CO原子被困在GR
摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q
摘要:最近,我们小组报告称,烯酮和酮官能团在光激发下可指导萜类衍生物中的位点选择性 sp 3 C − H 氟化。这种转变究竟是如何发生的仍然是个谜,因为人们想到了大量的机制可能性。在此,我们报告了一项全面的研究,通过动力学研究、同位素标记实验、19 F NMR、电化学研究、合成探针和计算实验描述了反应机制。令我们惊讶的是,该机制表明分子间氢原子转移 (HAT) 化学在起作用,而不是最初设想的经典诺里什氢原子抽象。更重要的是,我们发现了苯偶酰和相关化合物等光促进剂的独特作用,即它们必须通过氟化进行化学转化才能有效。我们的研究结果提供了一种不寻常的定向 HAT 形式的记录,对于定义未来方法开发的必要参数至关重要。■ 简介
虽然具有长相干时间的数据量子比特对于量子信息的存储至关重要,但辅助量子比特对于容错量子计算的量子纠错 (QEC) 至关重要。光镊阵列的最新发展,例如大规模量子比特阵列的制备和高保真门操作,为实现 QEC 协议提供了潜力,而下一个重要挑战之一是控制和检测辅助量子比特,同时尽量减少原子损失和串扰。在这里,我们介绍了由双同位素镱 (Yb) 原子阵列组成的混合系统的实现,其中我们可以利用费米子 171 Yb 的核自旋量子比特作为数据量子比特,利用玻色子 174 Yb 的光时钟量子比特作为辅助量子比特,具有无损量子比特读出能力。我们评估了量子比特之间的串扰对 174 Yb 成像光的核自旋量子比特相干性的影响。对于 174 Yb 的 Hahn 回波序列,使用 399 nm 探针和 556 nm 冷却光束,我们观察到在 20 ms 曝光下保留了 99.1 (1.8)% 的相干性,产生了 0.9992 的鉴别保真度和 0.988 的生存概率。使用 556 nm 探测光束的 Ramsey 序列对相干性的影响可以忽略不计,这表明未来低串扰测量可能会有所改善。这一结果凸显了混合 Yb 原子阵列在基于辅助量子比特的 QEC 协议的中路测量中的潜力。
量子电路合成描述了将任意酉操作转换为固定通用门集的门序列的过程,该门集通常由给定硬件平台的原生操作定义。大多数当前合成算法旨在合成一组单量子比特旋转和一个额外的纠缠双量子比特门,例如 CX、CZ 或 Mølmer-Sørensen 门。然而,随着中性原子硬件的出现及其对两个以上量子比特门的原生支持,针对这些新门集量身定制的合成方法变得必要。在这项工作中,我们提出了一种使用 ZX 演算合成(多)控制相位门的方法。通过将量子电路表示为图形状的 ZX 图,可以利用对角门的独特图形结构来识别某些量子电路中固有存在的多控制相位门,即使原始电路中没有明确定义。我们在各种基准电路上评估了该方法,并将它们与标准 Qiskit 综合进行比较,比较了其在具有多控制门原生支持的中性原子硬件上的电路执行时间。我们的结果显示了当前最先进硬件的可能优势,并代表了第一个支持任意大小多控制相位门的精确综合算法。
实现实际相关的、计算困难问题的量子加速是量子信息科学的核心挑战。使用两个空间维度中多达 289 个量子比特的 Rydberg 原子阵列,我们通过实验研究了解决最大独立集问题的量子算法。我们使用与 Rydberg 阻塞相关的硬件高效编码,实现闭环优化来测试几种变分算法,然后将它们应用于系统地探索具有可编程连接的一类图。我们发现问题难度由解决方案的退化和局部最小值的数量控制,并且我们通过实验将量子算法的性能与经典模拟退火进行了对比。在最难的图上,我们观察到在深电路范围内寻找精确解的超线性量子加速,并分析了其起源。C
量子系统的纠缠调控是量子计算和通信的基础,在量子信息处理中具有重要意义,因此引起了众多物理学家的兴趣[1–3]。此外,为了增强纠缠和量子关联,人们提出了许多理论和实验方案[4–7]。纠缠度的测量可以通过不同的方法获得,例如冯·诺依曼熵[8,9]、共生度[10]、负性[11,12]和形成纠缠[13]。同样,纠缠路径也可以通过一些测量来预测,例如熵压缩[14]、层析成像熵[15,16]、维格纳函数[17]、量子不确定性和局域量子 Fisher 信息[18]。众所周知,在量子光学中,光与物质的相互作用存在着许多有趣的问题。这些问题分别是原子-场相互作用[19–21]、原子-原子相互作用[22,23]和场-场相互作用[24,25]。这些相互作用包含许多在实验系统中观察到的自然现象。此外,这些类型的相互作用可以用一些数学工具来描述,以从一种结构转换为另一种结构。一组两能级原子与量子化场之间的相互作用已转化为电磁场[26]、原子-原子或场-原子相互作用的三种模式[27,28]。在此背景下,我们旨在研究两能级原子与 SU(1, 1) 李代数类别之间的相互作用,其中原子可以被视为 SU(2) 李代数中正则化的粒子。许多作者已经研究了 SU(1,1) 和 SU(2) 量子系统之间的相互作用[14, 29]。讨论了阻尼库对 k = 1 / 4 时 Barut-Girardello 态的影响 [30]。研究了外部经典场系统耦合参数对 SU(1,1) 和 SU(2) 相互作用的影响 [31,32]。研究了量子 Fisher 信息 (QFI) [33, 34] 与以两种非简并模式相互作用的两个原子的量子纠缠之间的关系 [35]。给出了 SU(1,1) 李代数与三能级原子在激光场中的相互作用,该激光场与理想激光和真实激光有关 [32]。通过球谐函数可以生成 Barut-Girardello 态,该态可以描述系统纠缠 [36]。通过使用具有强度相关耦合和外部场的 Jaynes-Cummings 模型 [37],提出了 Perelomov 叠加可产生 Gilmore-Perelomov 类型的 SU(1, 1) 相干态。
我们提出了一种用于使用反应微笑来计算化学反应的原子经济算法的实施。Python编程用于连接RDKIT库来解析和解释化学结构,从而提供准确有效的化学可持续性计算。通过实施强大的算法来处理化学计量系数和多种反应,该方法对原子经济进行了全面的分析,这是绿色化学实践必不可少的指标。此外,这种计算方法可以轻松地集成到产生大量化学反应的AI应用中,作为筛选和优化步骤,进一步增强了可持续化学过程设计的潜力。我们通过几个案例研究证明了它的应用,强调了其有助于设计更可持续的化学过程的潜力。我们使用阿司匹林及其多个合成路线证明了这种方法。