地图清单 地图 1。印度尼西亚及其邻国的位置,同时显示了已建立的消防项目 地图 2。来自 IFFM 网站的火灾热点示例 地图 3。来自 JICA 消防项目的火灾热点示例 地图 4。来自 JICA 消防项目的火灾热点示例 地图 5。来自 BAPEDAL 网站的火灾热点示例 地图 6。来自新加坡气象局网站的火灾热点示例 地图 7。来自新加坡气象局网站的 NOAA AVHRR 火灾热点图像示例 地图 8。南加里曼丹班贾尔马辛附近的火灾和烟雾 地图 9。来自 NOAA 网站的加里曼丹南海岸 NOAA AVHRR 处理后图像示例,日期为 1997 年 10 月 8 日 地图 10a。来自 USDA 森林服务网站的 1997 年 10 月中加里曼丹沿海地区火灾地图示例1998 年 2 月东加里曼丹火灾示例,来自美国农业部森林服务局网站 地图 11. 1997 年火灾期间印度尼西亚上空 TOM 烟雾图像示例 地图 12a. 东盟火灾天气图 – 1998 年 7 月 6 日降水量 地图 12b. 东盟火灾天气图 – 1998 年 7 月 6 日火灾天气指数
科学原理 随着 70 年代大规模光学成像星载传感器的出现,人们发现了一种工具,可以定性但概括性地观察和监测地球表面。这些传感器的最大优点是覆盖范围广、重复率高,其中最突出的例子是高级甚高分辨率辐射计 (AVHRR),能够及时观察不断变化的大规模现象。随着 1986 年美国沿海区域彩色扫描仪任务 (CZCS) 的结束,科学海洋学界要求一种新的太空海洋颜色观测系统,以便更准确地测定海洋成分,例如叶绿素、悬浮物和腐烂的有机物,从而提供
当前一代NOAA极性卫星具有改进的AVHRR成像仪(以1.6微米为云,冰和雪地歧视的通道添加了通道),并将其声音器仪器继续提供基本测量。对微波炉发声仪器(例如高级微波炉发声单元(AMSU))的重要改进,以大约50 km的水平分辨率提供全天候温度的声音信息,并在水平分辨率约15 km的情况下提供水分响声信息。随着这种增强的微波音响器(更多的通道,更好的空间分辨率)的出现,全天候发声能力是在1998年建立的,并延续了高空间分辨率红外(良好的空间分辨率,逐渐发展为较高的光谱分辨率)。数据已成为国际天气服务运营实践的一部分。
在发射时,将为全球陆地生成两种植被指数 (VI) 算法。一种是标准归一化差异植被指数 (NDVI),它被称为现有 NOAA-AVHRR 衍生 NDVI 的“连续性指数”。在发射时,将有来自 NOAA-AVHRR 系列的近 20 年的 NDVI 全球数据集(1981 - 1999 年),可以通过 MODIS 数据进行扩展,以提供用于操作监测研究的长期数据记录。另一种是“增强型”植被指数 (EVI),它对高生物量区域的灵敏度更高,并且通过分离冠层背景信号和减少大气影响来改善植被监测。这两个 VI 在全球植被研究中相互补充,并改进了冠层生物物理参数的提取。还使用了一种新的合成方案,可以减少角度、太阳目标传感器变化。网格植被指数图使用 MODIS 表面反射率(针对分子散射、臭氧吸收和气溶胶进行了校正,并使用 BRDF 模型调整至最低点)作为 VI 方程的输入。网格植被指数将包括带有统计数据的质量保证 (QA) 标记,用于指示 VI 产品和输入数据的质量。产品可以总结为:
植被状况、覆盖、变化和过程的评估是全球变化研究项目的主要组成部分,也是具有重大社会意义的课题。光谱植被指数是最广泛使用的卫星数据产品之一,它为气候、水文和生物地球化学研究、物候学、土地覆盖和土地覆盖变化检测、自然资源管理和可持续发展提供了关键测量数据。植被指数 (VI) 是一种稳健且无缝的数据产品,无论生物群落类型、土地覆盖状况和土壤类型如何,它都以类似的方式在时间和空间上对所有像素进行计算,因此代表了真实的表面测量值。VI 的简单性使其能够跨传感器系统融合,这有助于确保长期陆地表面建模和气候变化研究的关键数据集的连续性。目前,已有超过二十年的 NOAA 高级甚高分辨率辐射计 (AVHRR) 得出的一致的全球归一化差异植被指数 (NDVI) 陆地记录,这对全球生物群落、生态系统和农业研究做出了重大贡献。在本章中,我们介绍了中分辨率成像光谱仪 (MODIS) VI 产品的当前状态、其算法状态和传统、验证和 QA。我们重点介绍了陆地遥感科学的一些重要进展,并讨论了使用 MODI 所带来的各种应用和社会效益
AARS 亚洲遥感协会 ADF 非洲发展论坛 ADR 替代性争议解决方案 AfDB 非洲开发银行 AFREF 非洲参考框架 AGIS 阿布贾地理信息系统 AGRHYMET 农业气象和业务水文学培训和应用中心(政府间农业、水文和气象中心)艾滋病 获得性免疫缺陷综合症 AISI 非洲信息社会倡议 ALS 艾伯塔省土地测量师协会 APC 进步通信协会 ATRCAD 非洲培训和非洲联盟发展行政研究中心 AUGT l'Agence d'Urbanisme du Grand Tunis AVHRR 先进甚高分辨率雷达 B2B 企业对企业(如服务) BdD BML 建筑材料贷款数据库 CAADP 综合非洲农业发展 CAD 计算机-辅助设计项目 CAFRAD 非洲发展行政培训研究中心 CAPRi 集体行动和产权 CASLE英联邦测量和土地经济协会 CBO 社区组织 CCDM 核心地籍域模型 CDI 灌溉域宪章 CePRC 加拿大电子政策资源中心 CFA 非洲金融共同体(货币) CGRN 自然资源管理单位 CIR 彩色红外 CNCR 国家规范委员会 农村 CNTIG 国家委员会遥感和地理信息科特科特迪瓦 COFO 土地委员会组成 CONSAS 南部非洲测量师会议 CR Conseils Ruraux 民间社会组织 民间社会组织 CTA 农业和农村合作技术中心 DADC 土地和地籍事务局 DADT 国土规划局
在迄今为止使用的海面温度 (SST) 操作处理方法中,在卫星数据影响最小的地方,对 SST 反演算法(通过对卫星测量的辐射与现场观测进行直接回归而开发)的置信度最高,而在卫星数据潜力最大的地方,置信度最低。在卫星记录过程中,现场数据的密度和空间分布发生了显著变化。这些变化可能影响了不同卫星算法的准确性。气溶胶的影响,特别是埃尔奇琼火山 (1982) 和皮纳图博火山 (1991) 的大规模喷发,导致反演的 SST 出现显著偏差和趋势,远远超过了气候监测严格的 0.1 degK.decade -1 要求。虽然 AVHRR Oceans Pathfinder 等再处理工作已成功消除了实际卫星 SST 数据中存在的大部分偏差,但它们在许多领域仍未达到要求;例如,云消除。与从卫星辐射估计 SST 密切相关的两个问题是云检测和表面效应。在云检测中,使用预定阈值可能会影响检测/误报率,因为云状态的变化会影响空间和时间检索误差。更好的方法是将每个观测的确定性级别输入到分析步骤中,作为每个观测的误差极限描述的一部分。在这方面,云检测误差通常是非高斯和非对称的,需要修改分析方法才能产生最佳结果。表面效应(趋肤效应和
ACIA 北极气候影响评估 AIRSS 北极冰情航运系统 AMSA 北极海运评估 AMSR-E 先进微波扫描辐射计 - 地球观测系统 ASPEN 北极航运概率评估网络 ASPPR 北极航运污染防治条例 AVHRR 先进甚高分辨率辐射计 AUV 自主水下航行器 CCG 加拿大海岸警卫队 CCGA 加拿大海岸警卫队辅助部队 CCGS 加拿大海岸警卫队舰艇 CLIP 当地冰压目录 CReSIS 冰盖遥感中心 CVN 夏比 V 型缺口 DMSP 国防气象卫星计划 ECA 排放控制区 EEZ 专属经济区 ESMR 电扫描微波辐射计 Envisat“环境卫星”是一颗地球观测卫星 EPA 环境保护署 FE 有限元 FD 有限差分 FRP 纤维增强塑料 FY 第一年 G&M 德国和米尔恩 GCM 全球气候模型 GPR 地面穿透雷达 HAZ 热量影响区 HAZID 危险源辨识 HAZOP 危险源与可操作性 IACS 国际船级社协会 IACS UR I 国际船级社协会,统一要求,极地级 ICESat 冰、云与陆地高程卫星 IMD 海洋动力学研究所 IMO 国际海事组织 IPCC 政府间气候变化专门委员会 LNG 液化天然气 MARAD 海事管理局 MARPOL 国际防止船舶污染公约 MCoRDS 多通道相干雷达测深仪 MODIS 中分辨率成像光谱仪 MOTAN 惯性运动测量系统 MPa 兆帕
过去的五十年见证了卫星遥感成为在当地,区域和全球空间尺度上测量地球的最有效工具之一。这些基于空间的观测值具有无损特征,可快速监测环境大气,其基础表面和海洋混合层。此外,卫星仪器可以观察到有毒或危险环境,而不会使人员或设备处于危险之中。大规模连续的卫星观测值补充了详细(但稀疏)的现场观测,并为理论建模和数据同化提供了无与伦比的体积和内容的测量。目前有大量非常重要的应用程序依赖于卫星的数据。对大气的观察用于天气预测,监测环境污染,气候变化等。(Wielicki等,1996)。海洋表面的遥感用于监测海岸线动力学,海面温度和盐度,海洋生态系统和碳生物量,海平面变化,海洋杂物和薄壁,水流和浅水区的基础地形的映射等。(Fu等,2019)。从卫星中对土地的遥感极大地有助于探索矿产资源(Zhang等,2017),对浮游和干旱的监测(Jeyaseelan,2004年),土壤水分,土壤水分(Lakshmi,2013; Babaeian et al。 (Lentile等,2006),农业监测(Atzberger,2013年),城市规划(Kadhim等,2016)等。最后,社会科学对全球危机进行调查(例如Covid-19大流行)的努力是从利用各种有针对性可视化来对人类环境进行分类的卫星遥感数据集中受益的,然后将这些观察结果与各种社会经济数据集联系在一起。(Diffenbaugh等,2020)。此外,卫星遥感为收集全球信息(例如1)行星地形等全球信息提供了有效的工具; 2)温度,水蒸气,二氧化碳和其他痕量气体的大气中; 3)表面和大气的矿物质和化学成分,以及4)冰冻层的特性,例如雪,海冰,冰川和融化池,以及5)热球,电离层和磁层的颗粒和电磁特性。对地球的遥感也可以提高艺术的技术状态,这有助于发展深空遥感任务,例如Voyager(Kohlhase和Penzo,1977)和Cassini-Huygens太空研究任务(Matson等人,2002年)。在观测卫星发育的早期阶段,卫星传感器的设计通常是高度针对性的。例如,在1970年代发射了一系列仪器:Landsat和高级高分辨率辐射仪(AVHRR)仪器,针对监视陆地表面和云的监视,总臭氧映射光谱仪(TOMS)仪器(TOMS)仪器,集中于观察总柱ozone和高分辨率的基础辐射仪器(HIGH-RADIARE RADIARE SUSTIRES)仪器(HIR-RADIARE SONDER SUPSERINTY)。这些任务的部署为每个目标主题提供了独特的数据,并由