图 2:生物神经元是相互通信并在突触中存储信息的细胞。一个神经元可以有数十万个突触,其内容由传感输入动作电位回忆。神经元整合活跃突触的值,并在整合值达到或超过阈值时产生动作电位输出。人工神经网络模拟了类似的行为。
AKIDA 驱动的智能传感器:范围为 250 至 400 米的智能传感器被放置在车顶、格栅后面、后视镜内以及嵌入在后窗或后挡板中。这些智能传感器实时分析整个数据量大的输入图像,并使用嵌入式 AI 加速器从特定感兴趣区域智能地提取有意义的信息。AKIDA AI 加速器:通过将推理限制在 ROI,AKIDA AI 加速器可帮助 LiDAR 系统更有效地检测移动车辆、行人、动物和物体。此外,智能传感器上的 AKIDA AI 加速器通过最小化发送到嵌入在 ADAS ECU 中的 AI 加速器的推理数据包的大小和复杂性来减少延迟。ADAS ECU:嵌入在 ADAS ECU 中的 AKIDA AI 加速器进一步分析可操作的 LiDAR 推理数据,以精确分类和识别车辆、行人、动物、路牌和物体。通过优化推理数据,AKIDA 消除了对通用 CPU 和 GPU 等计算和能耗密集型硬件的需求,这些硬件会增加 LiDAR 系统的尺寸和重量。
在澳大利亚证券交易所上市的 BrainChip (ASX:BRN) 正在将一项革命性的神经形态技术商业化。这款名为 Akida 的处理器是添加到计算机芯片中的专有知识产权 (IP),使芯片能够以类似于生物大脑的方式进行 AI 推理。Akida 的独特之处在于它能够利用稀疏性高效处理数据,从而消除不必要的计算,提高能效和性能。因此,Akida 不需要持续的互联网连接,从而大大降低了延迟。换句话说,与当今基于软件、耗能且在云端运行的人工智能 (AI) 解决方案相比,Akida 的决策速度要快得多。而且由于 Akida 处理数据的方式与人脑相同,因此即使芯片已经“在现场”部署,它也可以自主学习,从而不断改善结果。
欢迎来到Akida Edge AI Box快速启动指南。本手册将引导您完成设置Akida Edge AI框的过程,包括IP摄像机的必要网络配置。通过遵循本指南,即使您是网络概念的新手,您也可以设置和配置系统。
仅 2020 年,托管云工作负载的数据中心就排放了约 600 兆吨温室气体,超过整个英国 (GB) 的消耗量。除非发生根本性变化,否则到 2050 年,数据中心将消耗全球 20% 以上的能源!凭借其片上学习和低功耗、高吞吐量推理能力,我们相信 AKIDA 可以通过分散 AI 处理来帮助减少数据中心 98% 的碳排放。智能地分析片上数据将有助于终结数百万个端点向云数据中心发送的大量原始、未处理且大多不相关的数据,从而解决阻碍互联网拥塞的问题。
基于冯·诺依曼架构和经典神经网络的现代人工智能系统与大脑相比具有许多基本局限性。本文讨论了这些局限性及其缓解方法。接下来,本文概述了当前可用的神经形态人工智能项目,这些项目通过将一些大脑特征引入计算系统的功能和组织中来克服这些局限性(TrueNorth、Loihi、Tianjic、SpiNNaker、BrainScaleS、NeuronFlow、DYNAP、Akida)。此外,本文还介绍了根据神经形态人工智能系统所使用的大脑特征(神经网络、并行性和异步性、信息传输的脉冲性质、局部学习、稀疏性、模拟和内存计算)对其进行分类的原理。除了基于现有硅微电子技术的神经形态设备中使用的新架构方法外,本文还讨论了使用新忆阻器元件基的前景。本文还给出了在神经形态应用中使用忆阻器的最新进展示例。
基于冯·诺依曼架构和经典神经网络的现代人工智能 (AI) 系统与哺乳动物的大脑相比具有许多基本局限性。在本文中,我们将讨论这些局限性及其缓解方法。接下来,我们将概述目前可用的神经形态 AI 项目,这些项目通过将一些大脑特征引入计算系统的功能和组织来克服这些局限性(TrueNorth、Loihi、Tianjic、SpiNNaker、BrainScaleS、NeuronFlow、DYNAP、Akida、Mythic)。此外,我们还介绍了根据神经形态 AI 系统所使用的大脑特征对其进行分类的原则:联结主义、并行性、异步性、信息传输的脉冲性质、设备上学习、本地学习、稀疏性、模拟和内存计算。除了回顾基于现有硅微电子技术的神经形态设备所使用的新架构方法外,我们还讨论了使用新忆阻器元件基座的前景。我们还给出了在神经形态应用中使用忆阻器的最新进展示例。