纳米线中的 GaAs 量子点是可扩展量子光子学最有希望的候选者之一。它们具有出色的光学特性,可以频率调谐到原子跃迁,并为制造多量子比特设备提供了强大的平台,有望释放量子点的全部技术潜力。相干共振激发对于几乎任何实际应用都是必要的,因为它允许按需生成单个和纠缠光子、光子簇状态和电子自旋操纵。然而,这种激发方案下的纳米线结构的发射从未被证实过。在这里,我们首次展示了通过共振双光子激发和共振荧光从 AlGaAs 纳米线中外延生长的 GaAs 量子点实现双激子 - 激子级联发射。我们还报告说,共振激发方案与带隙以上激发相结合,可用于清洁和增强纳米线量子点的发射。
我们的装置由1/4波长超导谐振器和栅极定义DQD组成,如图1(a)所示。谐振器由超导量子干涉仪(SQUID)阵列[29]组成,其谐振频率fr可调。每个SQUID包含两个约瑟夫森结,其电感与通量有关。在本文中,我们设定谐振器频率fr = 6.758 GHz,总衰减线宽、内部损耗率和外部损耗率为(κ,κi,κe)/2π=(58.9,36.9,22.0)MHz。由于 SQUID 阵列的电感很高,谐振器阻抗 Zr≈1kΩ,远远超过典型共面波导的 50Ω。DQD 由 GaAs/AlGaAs 异质结构中的顶部金属栅极定义,标记为 L、P、U、R 和 D。电子被捕获在 DQD 中,其中两个点的电化学电位可以通过栅极 L、P 和 R 进行调制。然后
自从 1981 年 Mimura 博士展示出第一个高电子迁移率晶体管 (HEMT) 以来,HEMT 得到了迅速发展,并在不同的材料系统中商业化,用于各种应用。在早期开发阶段,基于 AlGaAs/GaAs、GaAs/InGaAs 和 InP 的 HEMT 被广泛应用于高速电子通信应用中,具有出色的噪声和功率性能。GaN HEMT 的发展为更多应用打开了大门,例如电力电子、毫米波频率系统、生物传感和抗辐射电子。最近,基于 AlGaN 和 Ga2O3 的超宽带隙材料 HEMT 已被引入并显示出令人鼓舞的结果。本期特刊将介绍创新的 HEMT 设备、基于 HEMT 技术的应用、HEMT 相关材料研究,包括外延生长、材料特性和制造技术以及 HEMT 模拟。
特性 • 符合 IEEE 802.3 以太网和 802.5 令牌环标准 • 低成本发送器和接收器 • 可选择 ST ® 、SMA、SC 或 FC 端口 • 820 nm 波长技术 • 信号速率高达 175 兆波特 • 链路距离高达 4 千米 • 指定使用 50/125 µ m、62.5/125 µ m、100/140 µ m 和 200 µ m HCS ® 光纤 • 可重复 ST 连接,误差在 0.2 dB 以内 • 独特的光学端口设计,可实现高效耦合 • 自动插入和波峰焊 • 无需电路板安装硬件 • 宽工作温度范围 -40 ° C 至 85 ° C • AlGaAs 发射器 100% 老化确保高可靠性 • 导电端口选项,带 SMA 和 ST 螺纹端口样式
芯片制造中使用的其他材料也适合使用 ICP-MS 进行分析,包括金属有机化合物,例如三甲基镓 (TMG)、三甲基铝 (TMA)、二甲基锌 (DMZ)、四乙氧基硅烷 (TEOS) 和三氯硅烷 (TCS)。此类化合物是用于在金属有机化学气相沉积 (MOCVD) 和原子层沉积中生长薄金属膜或外延晶体层的前体。纯金属,例如 Al、Cu、Ti、Co、Ni、Ta、W 和 Hf,用作物理气相沉积 (PVD) 的溅射靶,以在晶圆表面形成薄金属膜。砷化氢气体 (AsH 3 ) 用作非硅半导体(例如 GaAs、AlGaAs 和 InGaAsN)的前体。高 k 介电材料包括 Zr、Hf、Sr、Ta 和稀土元素 (REE) 的氯化物和醇盐。这些材料中的每一种都有可接受的污染物水平限值,需要使用 ICP-MS 进行分析。
量子频率梳子是对并行量子通信和处理的有用资源,因为自由度的稳健性和易于处理。在这项工作中,我们提出了一种基于纯无源光学组件(例如腔和光学延迟线路),生成宽带双音频梳子并控制其在粒子交换下的对称性的方法。我们使用集成的藻类半导体平台实验表明我们的方法,该平台产生了量子频率梳子,在室温下工作并遵守电气注射。我们显示了两光子频率梳的产生和操纵,并在500个峰上散布。这些结果为开发用于复杂量子操作的大规模平行和可重新发现系统的开发开辟了有趣的观点。
我们证明,可以设计中红外跨带过渡的吸收饱和,以10-20 kW cm 2的中等光强度和室温下。该结构由一系列具有明智设计的253 nm厚的GAAS/ALGAAS半导体异质结构的金属 - 气管导体 - 金属金属斑块组成。在低入射强度下,结构在强光 - 耦合方面起作用,并在接近8.9 L m的波长下表现出两个吸收峰。饱和作为向弱耦合方案的过渡,因此,在增加入射强度时向单峰吸收。与耦合模式理论模型进行比较解释了数据,并允许推断相关的系统参数。当泵激光器在空腔频率上调谐时,随着入射强度的增加,反射率会降低。相反,当激光器以极化频率调谐时,反射性非线性会随着入射强度的增加而增加。在这些波长下,系统模仿了MID-IR范围内可饱和吸收镜的行为,这是当前缺失的技术。
实现了在轴上硅(001)面上直接生长的InGaAs/AlGaAs量子阱激光器的室温连续波工作。首先在金属有机化学气相沉积系统中在硅衬底上生长一层厚度为420 nm、完全没有反相畴的GaAs外延层,然后在分子束外延系统中依次生长其他外延层(包括四组五周期应变层超晶格和激光结构层)。激光器采用宽条法布里-珀罗激光器,条带宽度为21.5 μm,腔长为1 mm。典型阈值电流和相应的阈值电流密度分别为186.4 mA和867 A/cm 2 。激射波长约为980 nm,斜率效率为0.097 W/A,在注入电流为400 mA时单面输出功率为22.5 mW。这一进展使得与量子阱激光器相关的硅基单片光电集成更加有前景,可行性增强。
摘要 — 本文介绍了如何配置一个流行的、商业上可用的软件包,用于解决基于有限元方法 (FEM) 的偏微分方程 (PDE),以有效地计算轴对称介电谐振器的回音壁 (WG) 模式的频率和场。该方法具有可追溯性;它利用 PDE 求解器接受所谓“弱形式”中麦克斯韦方程解的定义的能力。提供了用于估计 WG 模式的体积、填充因子以及在封闭(开放)谐振器的情况下的壁(辐射)损耗的相关表达式和方法。由于没有施加横向近似,即使对于低、有限方位角模式阶的准横向磁/电模式,该方法仍然准确。通过对几个非平凡结构进行建模,证明了该方法的通用性和实用性:(i)两个不同的光学微腔[一个由二氧化硅制成的环形,另一个是AlGaAs微盘];(ii)三阶蓝宝石:空气布拉格腔;(iii)两个不同的低温蓝宝石WG模式谐振器;(ii)和(iii)都在微波X波段工作。通过将(iii)之一拟合到一组测量的谐振频率,可以估算出蓝宝石在液氦温度下的介电常数。
摘要:大规模量子网络要求实现长寿命的量子记忆,因为固定节点与光量线相互作用。外恋种植的量子点具有高纯度和无法区分性的单个单个和纠缠光子的需求产生的巨大潜力。将这些发射器与长期连贯性时间的记忆耦合,可以开发混合纳米光子设备,这些设备结合了两个系统的优势。在这里,我们报告了通过液滴蚀刻和纳米填充方法生长的第一个GAAS/ALGAA量子点,它发射了带有狭窄波长分布(736.2±1.7 nm)的单个光子,接近硅变量中心的零孔子线。极化纠缠的光子是通过biexciton-依赖性(0.73±0.09)产生的。较高的单光子纯度从4 K(g(2)(0)= 0.07±0.02)至80 K(g(2)(0)= 0.11±0.01),因此使该混合系统在技术上具有对现实世界中量子光谱应用的技术吸引力。关键字:GAAS半导体量子点,单光子,纠缠光子对,液氮温度,钻石颜色中心,SIV零声子线Q