Altermagnetism最近在冷凝物理物理学中焦点,引起了物理特性的吸引人,并对Spintronics应用具有希望。这项研究使用自旋组理论深入研究了二维Altermagnetism的理论描述和cate-cater-Oritization。采用自旋组形式主义,我们建立了七个不同的自旋层基团,扩展了传统的五个laue群体,以描述二维altermagnetism。利用这些发现,我们对先前报道的二维altermagnets进行了分类,并鉴定出表现出Altermagnetism的不同材料。特别是单层mntemoo 6和VP 2 H 8(NO 4)2被预测为二维Altermagnets。此外,我们通过对称分析和密度功能理论计算来仔细检查其自旋动量锁定特性,从而证实了它们的Altermagnetic特性。
镁带结构的特征是与手性相反的模式的能量分裂,即使在没有应用的外部领域和相对论效应的情况下,由于海森伯格交换相互作用中的各向异性。我们基于原型RUO 2(一种原型的“ D-Wave” Altermagnet)对基于从头开始的电子结构计算进行定量原子自旋动力学模拟,以研究由热梯度产生的镁电流。我们报告了大量自旋Seebeck和自旋Nernst效应,即纵向或横向自旋电流,具体取决于磁子相对于晶体的繁殖方向,以及与温度ProFile中的非线性相关的有限自旋积累。我们的发现与Altermagnetic自旋组对称性以及线性自旋波理论和半经典Boltzmann转运理论的预测一致。
对RUO 2的基础研究始于60年前,当时它被确定为高度金属的氧化物[1-3]。 其化学稳定性和直接合成意味着它迅速发现应用是精度电阻的组成部分,并且早期也被鉴定为用于半导体设备的潜在屏障材料[4]。 在过去的二十年中,它已经看到了作为催化剂的兴趣[5],以及可能的应用作为锂储存材料[6]。 在过去的几年中,实验和理论工作表明,即使是如此简单且众所周知的材料也可以容纳物质的外来状态。 ruo 2已成为一种候选材料,该材料托有altermagnetism,在该状态下,由于磁性和晶体lattices的不同符号,共线抗磁性排序也破坏了时间逆转对称性[7]。 但是,该系统中的磁有序并未得到很大的观察。 单晶体上的中子散射测量值检测到通常在金红石结构中禁止的磁反射,该反射在金红石结构中被禁止,该磁反射约为1000k [8]。 谐振X射线散射[9]随后在晶体和薄膜上都进行了类似的观察。 此后,依赖于时间逆向对称性破坏的异常特性在RUO 2的薄膜中观察到,包括自旋转运[10,11],磁性菌群二科运动[12]和异常的霍尔效应(AHE)[13]。 自旋分辨光发射[14]还发现了al术状态预期的D-波对称性。 最近的争议在参考文献中得到了很好的总结。对RUO 2的基础研究始于60年前,当时它被确定为高度金属的氧化物[1-3]。其化学稳定性和直接合成意味着它迅速发现应用是精度电阻的组成部分,并且早期也被鉴定为用于半导体设备的潜在屏障材料[4]。在过去的二十年中,它已经看到了作为催化剂的兴趣[5],以及可能的应用作为锂储存材料[6]。实验和理论工作表明,即使是如此简单且众所周知的材料也可以容纳物质的外来状态。ruo 2已成为一种候选材料,该材料托有altermagnetism,在该状态下,由于磁性和晶体lattices的不同符号,共线抗磁性排序也破坏了时间逆转对称性[7]。但是,该系统中的磁有序并未得到很大的观察。单晶体上的中子散射测量值检测到通常在金红石结构中禁止的磁反射,该反射在金红石结构中被禁止,该磁反射约为1000k [8]。谐振X射线散射[9]随后在晶体和薄膜上都进行了类似的观察。依赖于时间逆向对称性破坏的异常特性在RUO 2的薄膜中观察到,包括自旋转运[10,11],磁性菌群二科运动[12]和异常的霍尔效应(AHE)[13]。自旋分辨光发射[14]还发现了al术状态预期的D-波对称性。最近的争议在参考文献中得到了很好的总结。似乎有大量的Altermagnetic效应观察到有关磁性的某些原始观察结果,尤其是在散装晶体中的问题[15,16]。muon光谱法通常对局部力矩非常敏感,在散装RUO 2中没有磁性[17]。16的计算提出了一个假设,即仅在化学计量材料被孔掺杂时才出现RUO 2中的Altermagnitism。非常清楚,尽管众所周知,但在应用磁场中,RUO 2的散装特性的研究相对较少。在本文中,我们介绍了
最近发现的Altermagnetic材料中的超导性具有针对基本物理和技术应用的巨大前景。在这项工作中,我们表明,Altermagnets中的特征性旋转sublattice锁定对可能的超导配对构成了严格的限制。尤其是我们发现,超导性,均匀的s波旋转 - 单琴配对的最常见形式是在altermagnet中无法实现的。考虑到平方晶格上A d x 2 -y 2-波动altermagnet的有效模型,我们发现最有可能的自旋 - 单词配对的形式具有d x 2 -y 2-或扩展的S波对称性。我们还发现,不允许使用相等的三重态P波配对的最简单形式,但只能以混合旋转三键p波状状态存在。我们在相互作用诱导的Altermagnetism模型中验证了这些限制,在该模型中,我们还建立了它们的有限摩托符合配对的有效性。此外,我们讨论了奇数超导配对的可能的配对对称性。由于我们的结果的普遍性,它们适用于固有的超导性和接近性诱导的超导性超导性的超导性。
平面约瑟夫森连接是工程拓扑超导性的关键,但受到面内磁场引起的轨道效应的严重阻碍。在这项工作中,我们通过利用固有的自旋极化带和零净磁化属性来介绍通用的拓扑结构约瑟夫森连接(TAJJS)。我们提出的tajjs有效地减轻了有害的轨道效应,同时在交界处的两端稳健地托管Majorana末端模式(MEMS)。具体而言,我们证明了d x 2 -y 2 -wave tajjs中的mems出现,但在d xy波构型中消失了,从而确立了altermagnet的晶体学方向角度θ作为拓扑的新控制参数。MEMS的独特自旋极化为自旋分辨测量提供了明确的实验特征。此外,通过利用D x 2 -y 2 - y 2波altermagnet之间的协同作用及其超导对应物,我们的建议自然而然地扩展到高t c平台。总的来说,这项工作将Altermagnets建立为实现拓扑超导性的多功能范式,桥接概念创新,具有可伸缩的量子体系结构,这些量子架构没有轨道效应和流浪场。