摘要我们介绍了PIX2GENTALT,这是一个用于零拍摄分段的框架,该框架学会了估计仅在闭塞背后部分可见的整个对象的形状和外观。通过利用大规模扩散模型并将其表示形式转移到该任务中,我们学习了一个有条件的扩散模型,用于在挑战零摄像的案例中重新构造整个对象,包括破坏自然和物理先验的示例,例如艺术。作为培训数据,我们使用了一个合成策划的数据集,其中包含遮挡对象与整个对应物配对。实验表明,我们的方法在既定基准上都超过了受监督的基准。我们的模型还可以用来显着改善在遮挡存在下的现有对象识别和3D重构方法的性能。
摘要众多研究表明,体育活动有助于词汇整合(即“制定效应”),表明行动可以提高记忆力的性能并支持语言编码。这种现象最近被描述为“体现的学习”,或者涉及与学习内容直接相关的自我执行或自我生成的动作的学习。体现的语义认为,认知基于源自人类经验的多模式表示,并且运动过程在语言处理中起着至关重要的作用。这一证据的许多证据在于神经影像学研究表明,在发育和成人期间,无论是在词汇加工过程中招募了感觉和运动系统。对成人第二语言(L2)学习者的研究通常表明,感觉运动网络也参与L2处理,但比L1少。与L1获取相比,这可能是由于L2学习经常被脱皮的。最近,人们对促进体现学习及其对L2学习的影响的神经认知过程的兴趣越来越大。在本章中,我们回顾了由行为和神经认知研究报告的主要结果,探讨了本地语言处理和成人L2学习者中体现的语言处理和学习。1。体现的语义是找到我们如何将概念与语言标签联系起来的关键,这是我们理解我们如何获得第一语言,后来在生活中学习第二种语言的基础(另请参见Tokowicz&Tkacikova,本卷)。尽管进行了数十年的研究,但关于人脑如何将声学信号(例如[g ɪˈ tː])与特定概念(例如吉他)联系起来(Saussure,1916; Shapiro,2011年)仍然几乎没有共识。当前有两个相反的观点,这些观点与为概念信息构建的表示类型不同。根据经典的Amodal理论,认知是一个计算过程,从感知和通过操纵心理符号来创造意义(Fodor,1998; Landauer&Dumais,1997)。通过“三明治模型”隐喻描述了这一点:感觉运动系统简单地感知信息(输入),然后产生动作(输出)(Hurley,1998)。同时,将认知夹在两者之间,以便1)将感知的输入转换为Amodal符号,并将其链接到我们语义内存中的相关信息,并在我们的语义内存中链接到2)对这些符号进行操作以进行输出。本质上,知识存储在一个孤立的语义记忆系统中,独立于感觉运动过程。经典的Amodal理论并不能说明我们如何理解这些符号的现实世界含义,而这些符号本身是由其他符号定义的。挑战传统认知研究的一些基本信念,体现了理论,规定概念符号在某些时候必须与现实世界有关,并以感觉运动体验为基础(Hauk&Tschentscher,2013年)。这也可能适用于更抽象的概念,例如自由,至少在最初与个人经验相关(例如,一个孩子从请子弹中提取自己并听到“您是免费的!”)。根据体现的语义,概念表示受到感觉运动过程的影响很大,语言形式基于我们人体的感知和行动计划体系(Barsalou,1999)。其背后的关键概念之一是“相关学习原理”,根据该原则,动作感知和意义的同时存在导致神经元的共同触发,形成神经连接或分布式神经网络,以进行语义处理(Pulvermu ller,1999; 2013; 2013; 2013; 2013; 2013; 2013; 2013)。简而言之,“什么共同开火,将电线一起开火”(Hebb,1949年),例如,如果孩子经常在踢球时听到“踢”一词,那么词典语义网络,负责处理“踢”一词的词典语义网络,以及负责处理和执行运动必要的动作的人,将成为共享的网络,将会随着时间的推移而成为共享的网络。这个想法与Amodal理论形成鲜明对比,该理论声称用于概念知识和语言的表示形式独立于身体及其经验。尽管本章中描述的许多研究所描述的,但在该领域的最新研究最初是黑色和白色的,但该领域的最新研究变得更加细微,并集中在何时以及如何体现语言上。
面孔是社会信息的丰富来源,可以激活人脑中许多不同地区。这些地区如何发展?根据一个突出的假设,在高阶缔合皮层区域(例如,内侧前额叶皮层(MPFC))中,视觉区域(例如,梭形面部面积(FFA))必须出现面部选择性。为了检验这一假设,我们将功能性磁共振神经成像(fMRI)数据集结合在一起,来自清醒的人(总n = 65名婴儿,年龄在2.6-11.9个月),而他们观看了脸,身体,物体和场景的电影。该组中最年轻,最古老的婴儿在腹侧颞皮层(成人FFA的大致位置)和MPFC中都有面部选择性反应。尽管对视觉刺激的总体响应随着FFA的年龄而增加,但面部选择性并未随着任何一个地区的年龄而显着增加。综上所述,这些结果不支持以下假设:在Amodal区域之前,像FFA这样的视觉区域发展了皮质功能,而是表明面部选择性反应在整个大脑中并行出现。关键字:婴儿,大脑皮层,fMRI,FFA,MPFC,ofa,sts,faces
语义细分是执行场景理解的有效方法。最近,3D鸟视图(BEV)空间中的细分已被驱动策略直接使用。但是,在商用车中使用的环绕式鱼眼摄像机的BEV细分工作有限。由于此任务没有现实世界的公共数据集,并且现有的合成数据集由于遮挡而无法处理Amodal区域,因此我们使用Cognata Simulator创建一个合成数据集,其中包括各种道路类型,天气和照明条件。我们将BEV细分概括为使用任何凸轮模型;这对于混合不同的相机很有用。我们通过在Fisheye图像上应用圆柱整流并使用基于标准LSS的BEV分割模型来实现基线。我们证明,我们可以在没有不明显的情况下实现更好的性能,这具有增加的运行时效应,这是由于预处理,视野和重新采样的伪像而导致的。此外,我们引入了一种可学习的bev池层策略,对鱼眼摄像机更有效。我们以遮挡推理模块来探讨该模型,这对于估计BEV空间至关重要。fisheyebevseg的定性 - 在视频中展示了https://youtu.be/hftpwmabgs0。
根据具身理论(包括具身、嵌入、扩展、演绎、情境和扎根认知方法),语言表征与我们与周围世界的互动有着内在联系,这反映在语言处理和学习过程中的特定大脑特征中。这篇共识论文从具身理论与非模态理论的原始竞争出发,探讨了一系列精心挑选的问题,旨在确定运动和感知过程何时以及如何参与语言过程,而不是是否参与。我们的研究领域非常广泛,从具身语义的神经生理特征(例如事件相关电位和场以及神经振荡)到语义处理和语义启动对具体和抽象词的影响,再到第一和第二语言学习,最后,使用虚拟现实来检查具身语义。我们的共同目标是更好地理解运动和感知过程在语言理解和学习所代表的语言表征中的作用。我们达成共识,基于该领域开展的开创性研究,未来的发展方向是通过承认具体和情境语言和语义过程的多模态性、多维性、灵活性和特质来提高研究结果的外部有效性。
根据具身理论(包括具身、嵌入、扩展、演绎、情境和扎根认知方法),语言表征与我们与周围世界的互动有着内在联系,这反映在语言处理和学习过程中的特定大脑特征中。从具身理论与非模态理论的原始竞争开始,这篇共识论文讨论了一系列精心挑选的问题,旨在确定运动和感知过程何时以及如何参与语言过程,而不是是否参与。我们的研究领域非常广泛,从具身语义的神经生理特征(例如事件相关电位和场以及神经振荡)到语义处理和语义启动对具体和抽象词的影响,到第一和第二语言学习,最后,使用虚拟现实来检查具身语义。我们的共同目标是更好地理解运动和感知过程在语言理解和学习所代表的语言表征中的作用。我们达成共识,基于该领域开展的开创性研究,未来的发展方向是通过承认具体和情境语言和语义过程的多模态性、多维性、灵活性和特质来提高研究结果的外部有效性。
部分遮挡图像识别 (POIR) 问题长期以来一直是人工智能面临的挑战。处理 POIR 问题的常用策略是使用非遮挡特征进行分类。不幸的是,当图像被严重遮挡时,此策略将失去效果,因为可见部分只能提供有限的信息。神经科学领域的一些研究表明,特征恢复(填充遮挡信息并称为非模态补全)对于人脑识别部分遮挡图像至关重要。然而,特征恢复通常会被 CNN 忽略,这可能是 CNN 对 POIR 问题无效的原因。受此启发,我们提出了一种新颖的受大脑启发的特征恢复网络 (BIFRNet) 来解决 POIR 问题。它模拟腹侧视觉通路来提取图像特征,并模拟背侧视觉通路来区分遮挡和可见图像区域。此外,它还使用知识模块存储对象先验知识,并使用完成模块根据可见特征和先验知识恢复遮挡特征。在合成和真实世界遮挡图像数据集上进行的深入实验表明,BIFRNet 在解决 POIR 问题方面优于现有方法。特别是对于严重遮挡的图像,BIRFRNet 大大超越其他方法,接近人脑性能。此外,受大脑启发的设计使 BIFRNet 更具可解释性。
摘要本文中介绍的实验研究是我们系列实验中的第一项,旨在测试儿童在感知这些对象的计算机模型(虚拟对象)时依赖于他们所知的真实物理对象的特征的假设。选择该维度是第一个研究的特征。维度是一种偏anmodal特征,也就是说,它可以根据各种模态(视觉或触觉)的感官信息来感知。进行了一项试验实验研究,以检验假设:学龄前儿童在片剂计算机屏幕上作用(在二维表面上)时,是否将虚拟的三维物体视为三维对象。4-5岁的20名儿童参加了实验。每个孩子都参加了五项实验测试:主测试1-在平板电脑屏幕上使用虚拟体积对象的动作(通过触摸移动),示例2-查看平板电脑屏幕上体积对象的图像,而无需与之执行操作。还进行了三个其他带有实际体积对象(视觉,触觉,视觉热量)的测试,以评估儿童的感知发育。每次测试后,仅根据触觉信息提供孩子,以在四个对象之间选择一个参考对象:两个三维和两个平面。94.1%的成功识别真实对象的儿童中,尽管视觉和触觉信息之间的不匹配有效,但样本1之后将虚拟对象识别为三维。关键字:虚拟3D图像,视觉热感知,视觉热差结果与在对三维对象的大小和形状中最佳整合在对更可靠的信息方面的大小和形状中最佳整合的想法是一致的。在样本2中,在缺少平板电脑屏幕上图像的可能性的情况下,随着三维对虚拟三维对象的识别相关的误差次数显着增加(33.3%)。