结合是水平基因转移的主要机制,促进了抗生素耐药性在人类病原体中的传播。它涉及通过称为交配菌毛的细胞外附属物来避免供体和受体细胞之间的连接。在细菌中,结合机制由质粒或转座子编码,通常介导同源移动遗传元件的转移。对古细菌的共轭知之甚少。在这里,我们通过三个共轭pili的冷冻电子显微镜确定原子结构,两种来自高疗法古细菌(Aeropyrum pernix和pyrobaculum calidifontis),另一个由一个由细菌的细菌ti toumefaciial to to to to to to to to to to to to to to toumefacial-to to to to to to to to to to toumefiti。 pili。然而,古细菌共轭机制(称为CED)已被“驯化”,即结合机械的基因编码在染色体上,而不是在移动遗传元素上,并介导细胞DNA的转移。
我们研究了在黄铁矿 (FeS 2 ) 上生长的铁和硫氧化、极嗜热酸的古菌 Metallosphaera sedula 的代谢组。由于细胞与矿物材料之间紧密接触和相互作用,从这些微生物中提取有机物是一项重大挑战。因此,我们应用了一种改进的方案来破坏微生物细胞并将其有机成分与矿物表面分离,通过液液萃取提取亲脂性化合物,并使用 MALDI-TOF MS 和 UHPLC-UHR-Q/TOF 进行代谢组学分析。通过这种方法,我们确定了几种参与中心碳代谢和古菌中发现的改良 Entner-Doudoroff 途径的分子、硫代谢相关化合物以及参与 M. sedula 适应极端环境(如金属耐受性和耐酸性)的分子。此外,我们还确定了参与微生物相互作用的分子,即通过生物膜形成进行的细胞表面相互作用和通过群体感应进行的细胞间相互作用,这依赖于信使分子进行微生物通讯。此外,我们利用高级化合物识别软件(MetaboScape)成功提取并识别了不同的饱和噻吩醌。这些醌是 M. sedula 的呼吸链电子载体,具有在极端环境条件下进行生命检测的生物标志物潜力。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年8月5日。 https://doi.org/10.1101/2024.08.05.606590 doi:Biorxiv Preprint
为了支持改善患者护理,该活动已由Medscape,LLC和新兴的传染病计划和实施。Medscape,LLC得到认可的持续医学教育委员会(ACCME),认证药物教育委员会(ACPE)(ACPE)和美国护士证书中心(ANCC)的认可,为医疗团队提供继续教育。Medscape,LLC指定此基于期刊的CME活动,最多为1.00 AMA PRA类别1 CRECTER™。医师应仅要求其参与活动的程度相称。成功完成此CME活动(包括参与评估部分),使参与者能够在美国内科医学委员会(ABIM)维护认证(MOC)计划中获得高达1.0 MOC的积分。参与者将赚取相当于该活动的CME积分数量的MOC积分。为了授予ABIM MOC信用,向ACCME提交参与者完成信息是CME活动提供商的责任。所有其他完成此活动的临床医生将获得参与证书。参加本期刊CME活动:(1)回顾学习目标和作者披露; (2)研究教育内容; (3)在最低传球分数为75%的情况下进行后测试,并在https://www.medscape.org/ qna/processor/72141上完成评估?show standalone = true&src = prt_jcme_eid_mscpedu; (4)查看/打印证书。有关CME问题,请参见第1744页。注意:Medscape的政策是避免在认可的活动中使用品牌名称。但是,为了尽可能清楚,在此活动中使用商标名称来区分混合物和不同的测试。这并不是要推广任何特定产品。
简介:低压微生物学实验是探究努力的重要组成部分,旨在为航天器的前进微生物污染的潜力提供信息,以及寻找Mars上灭绝和现存寿命的迹象(Carrier等人,2020年; Perl等; Perl等。2021a)。开创性的低压微生物工作的工作已证明许多细菌物种能够在低压的火星条件下生长,即降低了微生物(Schwendner&Schuerger,2020年)。例如,以前的研究对从7 MBAR生长的各种环境样本中分离出了20种低磷脂细菌(Schuerger&Nicholson,2016)。随之而来的工作开发了低压性的生物体,开发了低压微生物学实验的低压质体性,通过转录组和生理学研究(Fajardo-cavazos等,2018; Schuerger等,2020)。然而,以前的大多数低压微生物学研究都集中在细菌上,重点是行星保护。低压微生物学探索将古细菌融合在一起,重点是寻找灭绝和现存寿命的迹象很少。我们以前发表了第一次尝试从域古细菌中发展出一种低压力条件的方法,代表了火星上定义的地下小境。这项工作记录了模型的卤素古细菌haloferax火山在地下火星条件下约4个月的生存(Robinson&McQuaig-Ulrich,2022年)。2024)。后续实验揭示了h。volcanii的先前未知的代谢能力,可与火星相关的氧化氧化甲氯酸酯厌氧生长(Robinson等从这项工作中,我们假设,厌氧菌偏爱的化学条件可能会使火山烟草在低压浅的地下火星条件下能够生长。在这里,我们记录了H.火山菌作为卤素古细菌的第一批低皮质耐体。进一步,我们研究了这些卤素生物产生的类胡萝卜素色素如何,这些生物被认为是天文学研究中潜在的生物签名(Perl等人,2021b),是由地下火星条件的生长而实现的。
1 意大利墨西拿,Contrada Porticatello, 29, 98167,综合海洋生态学系,Anton Dohrn 动物站,西西里海洋中心; erika.arcadi@szn.it (EA); rosario.calogero@szn.it (RC); franco.andaloro@szn.it (FA) 2 意大利法诺海洋中心、Stazione Zoologica Anton Dohrn、Viale Adriatico 1-N、61032 法诺、海洋生物技术部; emanuela.buschi@szn.it 3 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Fano Marine Centre,Viale Adriatico 1-N,61032 Fano,意大利 4 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Villa Comunale,80121 Naples,意大利; pasquale.deluca@szn.it 5 国家海洋和实验地球物理研究所 - OGS Borgo Grotta Gigante 42/C, 34010 Sgonico,意大利; vesposito@inogs.it 6 海洋生物生物学和进化部,Stazione Zoologica Anton Dohrn,西西里海洋中心,Via dei Mille 46, 98057 Milazzo,意大利; teresa.romeo@szn.it 7 国家环境保护与研究研究所,Via dei Mille 46, 98057 Milazzo,意大利 8 马尔凯理工大学生命与环境科学系,Via Brecce Bianche, 60131 Ancona,意大利; r.danovaro@univpm.it 9 国家生物多样性未来中心(NBFC),90133 巴勒莫,意大利 * 通讯地址:eugenio.rastelli@szn.it (ER); michael.tangherlini@szn.it (MT) † 这些作者对这项工作做出了同等贡献。
通过元基因组组装的1个基因组和细菌在墨西哥Coahuila,Cuatro cienegas,Cuatean domes站点的高盐微生物垫中揭示局部辐射事件。3
Daoud,L。和Ali,M。B. (2020)。 卤素微生物:在生物技术和环境中具有重要应用的有趣的极端细胞。 在极端粒子的生理和生物技术方面(pp。) 51-64)。 学术出版社。 Kumar,V。和Tiwari,S。K.(2019)。 卤素古细菌及其应用之间的卤素多样性。 生态系统可持续性和生物技术应用中的微生物多样性:第1卷。 在正常和极端环境中的微生物多样性,497-532。 li,J.,Gao,Y.,Dong,H。,&Sheng,G。P.(2022)。 haloarchaea,从高盐水废水中去除污染物的出色候选者。 生物技术的趋势,40(2),226-239。 Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树 多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。 生物技术进步,107906。 Corral,P.,Amoozegar,M。A.和Ventosa,A。 (2019)。 卤素及其生物分子:生物医学中的最新进展和未来应用。 海洋药物,18(1),33。 Anshuman,K。P.(2023)。 卤素及其用于盐水废水处理的生物膜。 当前的生命科学研究,6。Daoud,L。和Ali,M。B.(2020)。卤素微生物:在生物技术和环境中具有重要应用的有趣的极端细胞。在极端粒子的生理和生物技术方面(pp。51-64)。学术出版社。Kumar,V。和Tiwari,S。K.(2019)。 卤素古细菌及其应用之间的卤素多样性。 生态系统可持续性和生物技术应用中的微生物多样性:第1卷。 在正常和极端环境中的微生物多样性,497-532。 li,J.,Gao,Y.,Dong,H。,&Sheng,G。P.(2022)。 haloarchaea,从高盐水废水中去除污染物的出色候选者。 生物技术的趋势,40(2),226-239。 Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树 多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。 生物技术进步,107906。 Corral,P.,Amoozegar,M。A.和Ventosa,A。 (2019)。 卤素及其生物分子:生物医学中的最新进展和未来应用。 海洋药物,18(1),33。 Anshuman,K。P.(2023)。 卤素及其用于盐水废水处理的生物膜。 当前的生命科学研究,6。Kumar,V。和Tiwari,S。K.(2019)。卤素古细菌及其应用之间的卤素多样性。生态系统可持续性和生物技术应用中的微生物多样性:第1卷。在正常和极端环境中的微生物多样性,497-532。li,J.,Gao,Y.,Dong,H。,&Sheng,G。P.(2022)。haloarchaea,从高盐水废水中去除污染物的出色候选者。生物技术的趋势,40(2),226-239。Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树 多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。 生物技术进步,107906。 Corral,P.,Amoozegar,M。A.和Ventosa,A。 (2019)。 卤素及其生物分子:生物医学中的最新进展和未来应用。 海洋药物,18(1),33。 Anshuman,K。P.(2023)。 卤素及其用于盐水废水处理的生物膜。 当前的生命科学研究,6。Obruča,S.,Dvo树克,P.,Sedláček,P.,Koller,M.,Sedlá树多羟基烷烃通过卤素和热肥料的合成:朝着微生物生物塑料的可持续产生。生物技术进步,107906。Corral,P.,Amoozegar,M。A.和Ventosa,A。(2019)。卤素及其生物分子:生物医学中的最新进展和未来应用。海洋药物,18(1),33。Anshuman,K。P.(2023)。卤素及其用于盐水废水处理的生物膜。当前的生命科学研究,6。
摘要:二氧化碳 (CO 2 )、一氧化二氮 (N 2 O) 和甲烷 (CH 4 ) 等人为温室气体排放量不断增加是气候变化的主要驱动因素,如果不加以控制,预计未来几年将带来无数有害后果。鉴于 CH 4 在短期内能够有效地将热量困在空气中,以及反刍动物生产目前占人为排放量的约 30%,人们迫切需要大幅减少反刍动物产生的 CH 4 。虽然正在评估此背景下的各种策略,但可能需要采取多方面的方法来实现显着的减排。饲料补充是一种通过减弱瘤胃古菌的甲烷生成而在该领域显示出前景的策略;然而,这可能成本高昂且有时不切实际。在本篇综述中,我们研究并讨论了使用 CRISPR/Cas 介导的基因编辑平台直接调节饲料和/或瘤胃古生菌本身以减少甲烷生成的前景。这种方法可以提供一种有价值的补充替代方案,并有可能在未来为农业的可持续性以及减缓气候变化做出贡献。
CRISPR-Cas [成簇的规律间隔的短回文重复序列和 CRISPR 相关基因 (Cas)] 是原核生物抵御外来遗传元件入侵的适应性免疫系统,广泛分布于大多数古菌和许多细菌的染色体中(Garneau 等,2010;Marraffini,2015;Hille 等,2018)。该系统由一个 CRISPR 阵列组成,该阵列由短的直接重复序列组成,由从外来遗传元件获得的短可变 DNA 序列(称为“间隔区”)隔开,两侧是各种 Cas 基因。Cas 基因高度多样化,参与 CRISPR 活动的不同阶段。尽管 CRISPR-Cas 被称为原核生物的防御系统,但它们参与不同的非防御作用,包括细菌生物膜形成、群体感应的调节和致病性。本期特刊旨在收集介绍CRISPR-Cas研究最新进展的文章,以更好地了解CRISPR-Cas系统的分布、多样性和生物学功能。我们收集了9篇文章,重点介绍了CRISPR-Cas的分布、结构、生物学功能和应用的最新研究,以及CRISPR-Cas研究的伦理考虑。Cruz-López等人对716个金黄色葡萄球菌基因组的生物信息学分析发现,不同地理区域的金黄色葡萄球菌菌株中仅有0.83%具有IIA型CRISPR-Cas系统,这表明金黄色葡萄球菌中CRISPR-Cas的发生可能是自发的水平基因转移事件。 0.9% 的独特间隔区与质粒或噬菌体基因组相匹配,包括用于治疗金黄色葡萄球菌感染的噬菌体,表明金黄色葡萄球菌产生了噬菌体抗性,并且由于 CRISPR 防御机制导致治疗失败。从周围环境直接吸收外来 DNA 在细菌和古菌的基因组多样性和进化中起着重要作用。刘等人综述了 CRISPR 系统和 Argonauts 在细胞防御自然转化中的功能和可能的机制。有限数量的研究表明 II 型 CRISPR-Cas 可以阻止细菌的自然转化;然而,确切的机制以及其他类型的 CRISPR 系统是否也拮抗自然转化尚不清楚。Argonauts 还可以阻止质粒 DNA 的自然转化。与 CRISPR-Cas 系统不同,Argonauts 介导的防御不会将 DNA 片段整合到宿主基因组中,因此不会产生对入侵 DNA 的记忆。为了优化针对入侵遗传元件的序列特异性免疫,原核生物中的 CRISPR-Cas 不断从新入侵的威胁中获得间隔物。随着时间的推移,许多获得的间隔物可能在其防御机制中变得无用。因此,必须调节间隔物的吸收、其存在和丢失。Garret 发表了一篇非常有趣的评论,其中汇集了不同的观察结果和实验设计,以推测