1 ,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国
在许多领域学习材料的能力至关重要。随着技术的进步,现在可以详细研究原子化。本文在检查不同的反应时研究了两个因素,包括带宽和选择性。具体来说,它探讨了激光脉冲的持续时间如何影响研究过渡时能量和选择性的宽度。这是使用由Morlet小波建模的FEMTO-和ATTSOND脉冲的模拟完成的。然后将这些脉冲转换为傅立叶,以根据海森伯格的不确定性原理来分析该脉冲中所含能量的宽度。费米的黄金法则和电子结合能的表用于定性评估选择性。结果表明,1 FS脉冲对应于FWHM能量中的约1 eV,而A为脉冲对应于FWHM能量中约1000 eV。选择性在多个跃迁耦合时随着带宽的增加而,但是当特定过渡的耦合是dom-Inant时,会改善。 状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。,但是当特定过渡的耦合是dom-Inant时,会改善。状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。
脉冲表征基于强场物理学(例如Attosend straking and Tiptoe)的技术已被证明有效地表征了激光场的波形。尽管这些技术很强大,但它们通常需要高度复杂的设置或高强度,这对于MID-IR激光驱动程序而言可能具有挑战性。我们利用高谐波生成用于ZnO的薄膜和WS 2的单层薄膜中电场的时间域(HHG-TOE)。此方法涉及用弱复制品驱动驱动器的谐波产量。通过改变两个梁之间的延迟,我们测量了3200 nm处的几个周期脉冲的持续时间。我们的结果与已建立的脉冲特征技术表现出良好的一致性,从而验证了该方法的可靠性。
使用当今的激光技术。寻求Attsond激光脉冲是激光物理学研究的最前沿(1-3)。脉冲可能会引起Attoelectronics的发展,从而可以研究动力学并控制生物学,化学和固态物理学的电子过程,并以相同的方式导致Femtsecond Laser Technology导致FEMTEMETION(1)。另一方面,最先进的超强度激光器可以输送高达1 pw,脉冲持续时间从500 fs降至18 fs,在800 nm至1 m(4)。可以识别出通往Attsond脉冲的两条路径;与固态激光振荡器技术相关的第一个(5)将最短的激光脉冲的极限降低到近IR中的4.5 fs到可见域。在这些波长下,打破了Attosend阈值意味着产生亚周脉冲(6,7)。另一个路径是基于通过强烈的飞秒激光脉冲在稀有气体电离中产生的一些短波长竖琴的仔细组合(8),导致100-极端的紫外线脉冲(3)。产生更短的单周期的可能性,超强脉冲为新的未探索物理学开辟了道路,并可能产生超明显的attosecond脉冲(3)。超短脉冲产生和计算的当前方法已经按照传统材料的线性和非线性光学的限制(5)。超强激光的进一步发展必须基于相对论强度的非线性光学(能够处理高功率密度和热负荷的介质)(9)。一个例子是,Shvets等人最近引入了光学参数AM-PLIFIER(10)的等离子体。(11)。在本文中,我们提出了一种将现有最短的脉冲进一步缩短到超强单周期脉冲的方法。此方法基于血浆中激光脉冲经历的频率降档(或光子减速),因为与相对论质量非线性和激光唤醒场的合并自我相互作用(12)。光子频率降档伴随着总波动的保护,导致激光场矢量电位的强烈增强(13)。相对论自我关注还提供了峰值激光场的加法放大。使用三维(3D)和二维(2D)粒子中的粒子(PIC)仿真,我们发现该方法适用于脉冲宽度,激光频率,激光强度和血浆密度的广泛参数。该方法是一般且健壮的,因为可以调节等离子体密度以在较大的频率和脉冲持续时间内生成脉冲。尽管以前的作品(6,7)在产生单周期