摘要 — 本文介绍了一种可扩展 W 波段相控阵系统的设计和实现,该系统具有内置自对准和自测试功能,基于采用 TowerJazz 0.18 µ m SiGe BiCMOS 技术制造的 RFIC 收发器芯片组,其 f T / f MAX 为 240/270 GHz。该 RFIC 集成了 24 个移相器元件(16TX/8RX 或 8TX/16RX)以及直接上变频器和下变频器、带素数比倍频器的锁相环、模拟基带、波束查找存储器和用于性能监控的诊断电路。设计了两个带有集成天线子阵列的有机印刷电路板 (PCB) 插入器,并将其与 RFIC 芯片组共同组装,以产生可扩展的相控阵瓦片。瓦片通过菊花链式本振 (LO) 同步信号彼此相位对齐。本文介绍了 LO 错位对波束方向图的影响的统计分析。16 个瓦片组合到载体 PCB 上,形成一个 384 元件 (256TX/128RX) 相控阵系统。在 256 个发射元件的视轴处测量到的最大饱和有效全向辐射功率 (EIRP) 为 60 dBm (1 kW)。在 90.7 GHz 下运行的无线链路使用 16-QAM 星座,在降低的 EIRP 为 52 dBm 的情况下,产生的数据速率超过 10 Gb/s,等效链路距离超过 250 m。
他在 BITS Pilani 获得了工程学学士学位(荣誉学位),并曾在 CMC Delhi 担任软件工程师,负责铁路计算机化项目,后来加入 SCL 的 CMOS 部门。他曾在美国加利福尼亚州的罗克韦尔半导体公司工作,参与 R65 系列设备的设计。他曾在 CMOS 的不同领域工作过,在 CMOS 设计、设备测试/特性描述、ATE 上的测试程序开发、硅调试以及几个技术节点的工艺集成/移植方面拥有丰富的经验;从 5µm 到亚微米节点。他还在 AMS Austria 工作了十个月,负责在其代工厂移植 SCL 的 CMOS 工艺。目前,作为 SCL/ISRO 的集团负责人,他管理着四个关键部门:VLSI 设计、工艺开发、光电设备和 MEMS 设计。他在各种 ASIC 和产品的设计方面发挥了重要作用,例如电表芯片、单片电话、12 位 ADC、14 位 DAC、CMOS 成像传感器 CIS、信号处理器、SRAM、LVR、LDO、RAdHARD 设备等。他感兴趣的领域是低功耗 CMOS 设计、DSM 体制下的模拟设计、DSM 时代的工艺增强/优化。他发起了许多新的工艺开发模块,例如 HV、SOI、BiCMOS、带背面减薄的 CCD 工艺技术、用于光子学的 Si 上的 III-V 材料等以及用于相机应用的 APS、超低功耗电路(偏置为几 nA)、轨到轨 OTA、RHDB SRAM 等。
摘要:随着金属氧化物半导体 (MOS) 制造技术的不断发展,晶体管自然而然地变得更耐辐射,这是通过稳步减小栅极氧化物厚度来增加栅极氧化物和沟道之间的隧穿概率。不幸的是,尽管已开发的晶体管具有这种抗辐射性能,但核电站 (NPP) 领域仍然需要更高的抗辐射水平。特别是在严重事故条件下,读出电路可能需要大约 1 Mrad 的总电离剂量 (TID),而反应堆堆芯周围则需要 100 Mrad。在核电站等恶劣辐射环境中,微型袖珍裂变探测器 (MPFD) 等传感器将是一种很有前途的技术,可用于检测反应堆堆芯中的中子。对于这些传感器,读出电路应从根本上靠近传感设备放置,以最大限度地减少信号干扰和白噪声。因此,高辐射环境下的电路必须具有抗辐射能力。本文介绍了采用 SiGe 130 nm 和 Si 180 nm 制造工艺、不同通道宽度和互补金属氧化物半导体 (CMOS) 和双极 CMOS (BiCMOS) 晶体管类型的抗辐射电荷敏感放大器 (CSA) 的各种集成电路设计。这些电路在高水平活度:490 kCi 的钴-60 γ 射线环境下进行了测试。实验结果表明,随着辐照剂量的增加,幅度下降 2.85%–34.3%,下降时间增加 201–1730 ns,信噪比 (SNR) 降低 0.07–11.6 dB。这些结果可为抗辐射运算放大器在晶体管尺寸和结构方面的设计提供指导。
《模拟电路与信号处理》丛书,前身为《Kluwer 国际工程与计算机科学丛书》,是一套高水准的学术专业丛书,出版有关模拟集成电路和信号处理电路与系统的设计和应用的研究成果。通常每年我们会出版 5-15 本研究专著、专业书籍、手册和编辑本段,分发给世界各地的工程师、研究人员、教育工作者和图书馆。该丛书促进并加快了模拟领域新研究成果和教程观点的传播。全球范围内,该领域开展着大量令人兴奋的研究活动。研究人员正努力通过改进模拟功能来弥合传统模拟工作与超大规模集成 (VLSI) 技术的最新进展之间的差距。模拟 VLSI 已被公认为未来信息处理的主要技术。模拟工作正在显示出巨大变化的迹象,重点是结合设备/电路/技术问题的跨学科研究工作。因此,新的设计概念、策略和设计工具正在被揭示。感兴趣的主题包括:模拟接口电路和系统;数据转换器;有源 RC、开关电容和连续时间集成滤波器;混合模拟/数字 VLSI;仿真和建模、混合模式仿真;模拟非线性和计算电路和信号处理;模拟神经网络/人工智能;电流模式信号处理;计算机辅助设计 (CAD) 工具;新兴技术中的模拟设计 (可扩展 CMOS、BiCMOS、GaAs、异质结和浮栅技术等);模拟测试设计;集成传感器和执行器;模拟设计自动化/基于知识的系统;模拟 VLSI 单元库;模拟产品开发;射频前端、无线通信和微波电路;模拟行为建模、模拟 HDL。
CS4192 是单片 BiCMOS 集成电路,用于将来自微处理器/微控制器的 10 位数字字转换为互补直流输出。直流输出驱动通常用于车辆仪表板的空心仪表。10 位数据用于直接线性控制仪表的正交线圈,在仪表的整个 360° 范围内具有 0.35° 分辨率和 ± 1.2° 精度。来自微控制器的接口是通过串行外设接口 (SPI) 兼容串行连接,使用高达 2.0 MHz 的移位时钟速率。数字代码与所需的仪表指针偏转成正比,被移入 DAC 和多路复用器。这两个块提供切向转换功能,可将数字数据转换为所需角度的适当直流线圈电压。在 45 ° 、135 ° 、225 ° 和 315 ° 角处,切向算法在仪表运动中产生的扭矩比正余弦算法大约高 40%。这种增加的扭矩减少了由于这些临界角度下的指针下垂而导致的误差。每个输出缓冲器能够为每个线圈提供高达 70 mA 的电流,并且缓冲器由公共 OE 启用引脚控制。当 OE 变为低电平时,输出缓冲器关闭,而芯片的逻辑部分保持通电并继续正常运行。OE 必须在 CS 下降沿之前处于高电平才能启用输出缓冲器。状态引脚 (ST) 反映输出的状态,并且在输出被禁用时处于低电平。串行仪表驱动器具有自我保护功能,可防止发生故障。每个驱动器均受到 125 mA(典型值)过流保护,而全局热保护电路将结温限制在 170°C(典型值)。只要 IC 保护电路检测到过流或过温故障,输出驱动器就会被禁用。驱动器保持禁用状态,直到 CS 上出现下降沿。如果故障仍然存在,输出驱动器将再次自动禁用。
摘要:精确度量在电子设备中起着至关重要的作用,特别是在使用BICMOS技术的设备中嵌入THZ应用中的硅具有异质结(HBT)的表征。由于最近在纳米范围内制造技术的创新,能够在亚毫升波区域运行的设备成为现实,并且必须满足对高频电路和系统的需求。将精确的模型达到此类频率,不再有可能限制参数以下的提取低于110 GHz,并且必须研究允许获得被动和主动设备的可终止测量的新技术。在本论文中,我们将研究不同无源测试结构的硅(磁力)上S参数的特征,而B55技术中的HBT SIGE从Stmicroelectronics(最高500 GHz)进行了SIGE的表征。我们将首先引入通常用于此类分析的测量设备,然后我们将转到IMS实验室中采用的各种测量台,最后我们将重点介绍校准和剥离技术(DE-DEMEDDIQUS(DE-EXED),通过审查高频率特征和两种效率上的校准劳ith钙的主要批评,以进行校准和剥离技术。 TRL)到WR-2.2条。在完成时,我们将提出一些测试结构,以评估对Miller Wave测量和新输电线设计解决方案的不良影响。将提出两个为IMS的磁力表征的光质产生的循环:我们将介绍一个新设计的浮球层设计,并评估其限制寄生效应以及其环境效果(底物,邻近的结构和diaphony)的能力。为了进行分析,我们将依靠紧凑型模型 +探针的电磁模拟和混合EM模拟,包括用于评估测量结果的探针模型,更接近实际条件。将仔细研究两个有希望的设计:“布局M3”,旨在以单个级别的校准表征DUT,而“曲折线”,通过避免在硅的测量过程中避免任何运动,从而保持两个恒定探测器之间的距离。关键字:表征,传输线,Terahertz,毫米波,校准,silicuim,tbh坐着
市场新闻 6 智能手机出货量将在 2023 年第三季度小幅下滑后复苏 微电子新闻 8 CML 完成对微波技术的收购 宽带隙电子新闻 10 DENSO 和三菱电机向 Coherent 的 SiC 部门投资 10 亿美元 • Soitec 启动 SmartSiC 晶圆生产工厂 • J2 和 HKSTP 在香港建立第一家 SiC 晶圆厂 • onsemi 完成韩国 SiC 晶圆厂扩建 • 英飞凌完成对 GaN Systems 的收购 • 英飞凌签署多年期协议,为现代/起亚供应电源半导体 • 美国国防部为北卡罗来纳州立大学牵头的“CLAWS”微电子公共区域创新中心拨款 3940 万美元 • GlobalFoundries 获得美国政府 3500 万美元资助,以加速 200 毫米 GaN-on-Si 芯片的生产 • 佛蒙特大学-GF 联盟被指定为技术中心 • Element Six 入选美国国防部 LADDIS 计划 • 首款 JEDEC 标准顶部冷却表面贴装 TOLT GaN晶体管 • 东京农工大学和日本酸素公司通过MOVPE实现高纯度Ga 2 O 3薄膜的高速生长 材料和加工设备新闻 27 Riber的MBE 49 GaN将与MOCVD竞争200mm GN-on-Si • ELEMENT 3–5的ACCELERATOR 350K为批量生产提供单晶AlN • Aehr的收入同比几乎翻了一番 LED新闻 32 Mojo Vision的A轮融资几乎翻了一番,达到4350万美元 • NS Nanotech获得100万美元NSERC资助,用于开发纳米级LED和激光器 • ams OSRAM筹集22.5亿欧元以满足2025/26年的融资需求 光电子新闻 38 SuperLight Photonics在与DeepTechXL和oost NL的投资轮中获得种子资金 光通信新闻 40 ECOC 2023的新闻 • Coherent和Kinetic延长合作伙伴关系以启用网络边缘的 100G 服务 • OpenLight 与 Spark 合作扩展设计服务 • imec 推出 SiGe BiCMOS 光接收器,总数据速率达到 200Gbps 光伏新闻 50 NREL 创下 D-HVPE 生长的单结 GaAs 电池 27% 的效率记录
在高电阻率 200 mm <111> Si 上采用 Cu 大马士革 BEOL 工艺开发与 Si 代工厂兼容的高性能 ≤0.25 µm 栅极 GaN-on-Si MMIC 工艺 Jeffrey LaRoche 1 、Kelly Ip 1 、Theodore Kennedy 1 、Lovelace Soirez 2 、William J. Davis 1 、John P. Bettencourt 1 、Doug Guenther 2 、Gabe Gebara 2 、Tina Trimble 2 和 Thomas Kazior 1 1 Raytheon IDS Microelectronics,362 Lowell St.,Andover,MA 01810 电子邮件:jeffrey_r_laroche@raytheon.com 电话:(512)-952-2927 2 Novati Technologies, Inc.,2706 Montopolis Drive,Austin,TX 78741 关键词:GaN、HEMT、硅、MBE、大马士革、200 mm 摘要 雷神公司正在开发一种 200 mm GaN on Si MMIC 工艺,该工艺适用于独立的高频 MMIC 应用,以及与 Si CMOS、SiGe BiCMOS 和其他 III-V 族的异质集成。在之前的 100 mm 和 200 mm GaN-on-Si 工作 [1-5] 的基础上,这项工作报告了在完全集成的 MMIC 方面取得的进展,以及在 200 mm 直径的 Si 晶片上实现世界上第一个 X 波段 GaN 0.25 µm 功率晶体管。这种 GaN-on-Si HEMT 在 V d = 28 V 时可提供 4.7 W/mm 的功率和 9 dB 的增益,PAE 为 49%。晶圆由商业 CMOS 代工厂 Novati Technologies 制造,采用完全减成、无金、类硅的制造方法。简介 在过去十年中,氮化镓 (GaN) 在电力电子以及高功率密度和高线性度 RF 应用中引起了广泛关注。很显然,200 mm 硅基 GaN 晶圆的大规模商业化生产将由电力电子应用推动。然而,随着这些应用开始填充 200 mm 代工厂,高性能硅基 GaN RF MMIC 应用将自然跟进,并利用大直径晶圆和背景晶圆体积来降低 RF IC 的成本。除了在 200 mm 晶圆上制造的硅基 GaN MMIC 的成本优势之外,与芯片到晶圆方法相比,大直径晶圆制造还为 GaN HEMT 与硅 CMOS 的异质集成(以实现附加功能)提供了优势。虽然与芯片到晶圆集成兼容,但 200 毫米 GaN IC 与 200 毫米 CMOS 的晶圆到晶圆异质集成在缩短互连长度和提高高密度、高性能 IC 产量方面更有前景。为了促进未来成本、产量和功能的改进,雷神公司正在高电阻率 200 上开发亚微米(≤0.25 µm 栅极)GaN-on-Si MMIC 工艺
卫星串行链路用于更高的数据吞吐量和更高频率的电信有效载荷,这需要更多地使用机载计算机处理,因此光学互连成为卫星上数字有效载荷的首选解决方案。特别是,数据速率的增加加剧了与电气域互连相关的挑战,其中传输距离随着比特率的增加而显著缩短。这既限制了 ASIC 的 SerDes 通道的覆盖范围,也导致需要更复杂的调制格式和更多的 DSP,这两者都会导致功耗增加。光学互连还受益于重量减轻和对 EMI 的免疫力。到目前为止,卫星有效载荷的光学收发器一直专注于基于中板 VCSEL 的技术,第一代收发器的速度为 12.5 Gb/s 1 已在轨道上演示,第二代设备的目标是 25 Gb/s,预计将在下一步演示。然而,与地面数据中心的趋势类似,数据速率现在正在增加到对直接调制 VCSEL 具有挑战性的水平,而转向 O 波段和 C 波段更常见的通信波长也带来了许多优势。共封装光学器件 (CPO) 是地面数据中心应用的新兴标准,有机会为卫星有效载荷采用类似的架构。CPO 的目标是将光收发器集成到非常靠近功能性 ASIC/FPGA 的位置,从而能够使用功率较低的短距离 SerDes 并促进更高数据速率的传输,同时保持信号完整性并减轻 EMI 效应。通过 ESA 合同“ProtoBIX”,MBRYONICS 和 imec 正在开发一种基于硅光子的收发器,该收发器从头开始设计,用于部署在卫星有效载荷上。共封装方法采用单独的 Rx 和 Tx 光子集成电路 (PIC),以实现电吸收调制器 (EAM) 和光电二极管 (PD) 的高性能。 EAM 的优势在于它们比环形调制器具有更大的光带宽,而且与基于环形谐振器的设计相比,它们不需要波长调谐。Tx 和 Rx PIC 在 imec 的 iSiPP200 平台上制造,而定制的抗辐射调制器驱动器则在 IHP SG13RH SiGe BiCMOS 工艺 2 上设计和制造。收发器使用 NRZ 调制时的数据速率为每通道 56 Gb/s。通过详细分析,NRZ 格式被选为最有前景的格式,因为它允许使用直接驱动概念,其中 ASIC/FPGA SerDes 驱动调制器驱动器并消除了 CDR 和重定时,同时也消除了对 DSP 的需求。此外,与 56 GBd NRZ 相比,28 GBd PAM4 所需的线性度会导致显著的功率损失。
抽象的慢性阻塞性肺疾病(COPD)是一种威胁生命的肺部疾病,是全球发病率和死亡率的主要原因。尽管尚未找到治疗疗法,但对反映疾病进展的生物标志物的永久监测对于有效管理COPD起着关键作用。对唾液等呼吸道流体的准确检查是一种有前途的疾病方法,可以预测其即将到来的疾病(POC)环境中的加剧。但是,对患者人口统计和医疗参数的同时考虑对于实现准确的结果是必要的。因此,机器学习(ML)工具可以在分析患者数据并为识别POC环境中识别COPD的全面结果中发挥重要作用。因此,这项研究工作的目的是实施ML工具,从表征COPD患者和健康对照的唾液样本及其人口统计信息中获取的数据以及POC识别该疾病的人口信息。为此,使用了介电常数生物传感器来表征唾液样品的介电特性,随后将ML工具应用于获得的数据进行分类。XGBoost梯度增强算法的高分类准确性和敏感性分别为91.25%和100%,使其成为COPD评估的有前途的模型。将来将该模型整合到神经形态芯片上,将来可以在POC中对COPD进行实时评估,低成本,低能消耗和高患者隐私。此外,在接近患者设置中对COPD的持续监测将使疾病加剧更好地治疗。