建筑一体化光伏热能 (BIPV/T) 系统为住宅建筑的发电和供暖提供了一种高效的清洁能源生产方式。因此,本文介绍了一种新型 BIPV/T 系统,以最大程度地降低住宅建筑的能耗。所提出的 BIPV/T 系统的精细设计是通过 MATLAB/Simulink ® 动态建模完成的。在不同的季节条件下对 BIPV/T 系统进行性能分析,并进行深入的技术经济分析,以估计系统热能、电气和经济性能的预期提升。此外,还进行了敏感性分析,以探讨各种因素对所提出的 BIPV/T 系统的能量和经济性能的影响。此外,还开发了两层前馈反向传播人工神经网络模型,以准确预测 BIPV/T 的每小时太阳辐射和环境温度。此外,还使用 NSGA-II 方法进行了多目标优化,以最小化 BIPV/T 电站的总面积并最大化系统的总效率和净热功率,以及估算在提供的范围内不同季节输入变量的优化运行条件。敏感性分析表明,较高的太阳通量水平会导致 BIPV/T 电站的电力输出功率增加,但由于热损失增加,总效率会降低。此外,提出的 NSGA-II 显示了一种可行的方法,可以在最小总电站面积 32.89 平方米的情况下实现最大净热功率和最佳总效率 5320 W 和 63%,并且与理想解决方案的偏差指数非常低。在最佳条件下,平准化电力成本为 0.10 美元/千瓦时。因此,这些发现为 BIPV/T 系统作为住宅应用的可持续高效能源解决方案的潜力提供了宝贵的见解。
屋顶系统可以放置在现有或新建建筑物的屋顶上(图 2)。这些系统通常将电力供应到安装系统的同一位置,从而减少场地的公用事业负荷。增加屋顶系统可能会带来一些结构上的好处,从而可能延长屋顶的使用寿命。太阳能光伏也可以作为新建筑的结构组成部分。这些集成系统通常被称为建筑一体化光伏 (BIPV),它们通常具有很强的美感,并且是建筑性的,而不仅仅是实用性的。它们可以提供多功能的能源改进,用于供暖、制冷遮阳和噪音,因为它们内置在结构中。马里兰州常见的 BIPV 应用包括 TESLA 的太阳能屋顶(Crider,2021 年;Lambert,2021 年;Stoetzer,2021 年)和 GAF Energy 的屋顶一体化太阳能(Gorman,2021 年;Jacoby,2021 年)等技术。然而,BIPV 的成本较高且复杂程度较高,因此对于大多数实际农业应用来说,它并不是最理想的选择。农业环境中屋顶太阳能的更传统应用包括家禽舍、谷仓或车间以及农场住宅。
任务 1 – 战略性光伏分析与推广 9 任务 1 重点 – 光伏系统数据模型 11 任务 12 – 光伏可持续性活动 12 任务 12 重点 – 光伏的 LCI 和 LCA 14 任务 13 – 光伏系统的性能、运行和可靠性 15 任务 13 重点 – 光伏电站测试 17 任务 13 重点 – 光伏的技术风险 18 任务 14 – 100% 可再生能源电力系统中的太阳能光伏 20 任务 14 重点 – 光伏辅助服务 22 任务 15 – 支持框架加速 BIPV 的发展 23 任务 15 重点 – BIPV 项目收集 25 任务 15 重点 – BIPV 分类 26 任务 16 – 高渗透和大规模应用的太阳能资源 27 任务 16 重点 – 太阳能资源手册 29 任务 17 – 光伏和运输 30 任务 17 重点 – 光伏驱动汽车 32 任务 17 重点 – 光伏驱动汽车充电 33 任务 18 – 离网和电网边缘光伏系统 34 任务 18 重点 – 离网可行性研究 36
在城市中,建筑一体化光伏 (BIPV) 的最佳推广需要精心规划,以安排能源的时间和空间分布,同时保持城市景观的美观。得益于城市 3D 模型质量的不断提高,通过将经过验证的动态能源模拟工具结合到开源计算平台中,提出了一种全面的方法,用于估算视觉上可接受的光伏发电、建筑物能源使用和经济上可行的微电网运行的潜在能源产生量。该平台旨在为城市规划人员和负责在现有社区规划大规模 BIPV 装置的官员提供帮助:在城市范围内进行模拟,包括立面潜力、植被遮蔽和带有上部结构的详细屋顶形状。通过一种新颖的视觉影响评估方法研究社会可接受性,并参考相关成本分析电网集成解决方案。在保守情况下,日内瓦(瑞士)的 BIPV 生产每年可产生 10 kW h 交流电/m 2 供暖地板面积,满足热泵供暖 32% 的电力需求,或者说几乎是制冷需求的 10 倍。目前,视觉影响已证明与电网集成约束并不并存,而是有助于过滤建筑围护结构表面并避免电网削减过剩电力。在不久的将来,随着电网效率的提高,视觉影响有望成为限制集成程度的关键标准。
染料敏化太阳能电池 (DSSC) 是一种有前途的光伏 (PV) 技术,适用于需要高美学特征和能量生产的应用,例如建筑一体化光伏 (BIPV)。在此背景下,由于通过分子工程开发了新的敏化剂,DSSC 具有波长选择性。染料研究的悠久历史为该技术提供了不同的颜色以达到全色光吸收。然而,近 45% 的阳光辐射位于近红外 (NIR) 区域,而人类视锥细胞对此区域不敏感。本综述为读者提供了有关如何选择性地利用该区域以基于 DSSC 技术开发无色透明 PV 的关键信息。除了选择性 NIR 吸收剂外,三联光阳极、对电极和氧化还原介质共同有助于实现高美学特征。本文结合 BIPV 应用讨论了所有组件的详细信息、相互作用以及实现无色透明 NIR-DSSC 的技术限制。
摘要:对实现净零净设备的新的可再生能源越来越兴趣。因此,建筑行业通过使用新的可再生能源,要求零能源建筑认证(ZEB)。但是,由于新的可再生能源类型之间的能量自我耐能力率(ESR)的变化,因此在设计阶段的ESR预测不正确可能导致问题。因此,在这项研究中,分析了每种新的可再生能源能力的ESR和施工成本,以预测光伏(PV)的ESR,构建综合光伏(BIPV),地热和燃料电池系统。被分析了韩国ZEB案例的被动和主动技术元素,并通过建立具有每种情况平均值的标准模型,为每个新的可再生能源容量计算ESR,并得出计算公式。结果表明,对于PV和BIPV系统,ESR的速率随容量(KWP)的增加而增加,分别为0.54%和0.34%。然而,对于地热系统和燃料电池,平均ESR分别为0.016%和1.46%,但是随着ESR速率随容量(kW)逐渐降低而逐渐降低,计算公式是通过日志图得出的。
可以通过更高的密度和更高的能源效率的房屋替换陈旧的库存来减少房屋的能源足迹,该房屋配备了可再生能源的能源生产。在这项研究中,考虑了一个“双密度”模拟方案,在该场景中,社区中每个现有的独立房屋被同一土地上的两个相等起居区的房屋取代。新房屋被认为配备了多种能源效率措施(信封,HVAC和家用热水)和建筑物集成的光伏(BIPV)屋顶。TRNSYS软件用于模拟加拿大魁北克蒙特利尔建筑物的年度能源性能(45.5°N)。发现这两个新房屋可容纳同一土地上的两倍的人数,其能量比现有房屋少30%。单独使用的新房屋所需的电力比现有房屋少65%(从22,560降低到7,850 kWh yr -1)。此外,安装在两个新房屋上的BIPV屋顶可能会产生近三倍的电力(44,000 kWh yr -1)(15,700 kWh yr -1)。每年,BIPV系统可以直接提供房屋电力的近一半(44%)。年度太阳能发电的显着部分(84%)可以在房屋上直接使用,可以在现场存储以供以后用于增加自我消耗(例如,电力对电能或电力电动汽车),或者可以将其导出到在其他地方的网格中的脱碳(E.G.燃料,Hydrogen,Hydrogen)的脱碳化。能源有效构建和现场可再生能源生产的综合作用将使乘员从消费5,640 kWh yr-1转变为生产3,540 kWh yr-1。住宅致密化可以显着促进现有社区进入弹性的积极能源区。
罗马-米乌尔大学建筑学院,罗马 00100,意大利 摘要:新的生产模式旨在改进各种新工艺和现有技术,通过创新的商业方法开拓新市场,并为建筑电力的转换和增强引入足够的技术解决方案。目标是在新的建筑过程中采用精益制造和机器人设备来创新玻璃技术,遵循符合能源效率、节能、可用性、可靠性、温湿健康、外观、视觉、声学健康、降低成本、建筑系统安全性和生产力需求的标准。我们重点介绍了集成设计仪器和方法的战略应用、数字制造、智能、动态、自适应和 LED 外壳、BIPV(建筑一体化光伏)与集成光伏板的智能玻璃幕墙、混合氢系统和 RES(可再生能源)在网络上的集成及其可靠性。这些标准适用于使用可再生资源的清洁能源。挑战在于新的建筑模式,增加科学支持,应用智能玻璃技术,有效利用各种旨在减少能源需求的解决方案,被动使用可再生能源的清洁能源。关键词:玻璃效率、技术创新、新模式、BIPV。1. 介绍
本论文的目的是评估 2020 年 6 月至 11 月瑞典市场上八个小型 PV(光伏)系统的技术性能。此外,本论文的目的还在于过滤测量数据,因为现场测量中通常会出现错误数据。已经采用了几种过滤方法来消除错误数据,例如线性插值、异常值和异常发电,以确保用于评估的数据的质量。测量的参数包括逆变器的输出功率、阵列辐照度平面、环境温度和模块温度。虽然模块技术对模块温度有一定影响,但在本研究中,安装方法对系统的模块温度影响更大。研究发现,与建筑一体化光伏(BIPV)系统相比,建筑应用光伏(BAPV)系统的模块温度较低。然而,安装方法对系统性能的明显影响尚不明显。系统 3 和 6 分别是 BAPV 和 BIPV 系统,它们是在单位能量产出 (kWh/kWp) 和性能比 (PR) 方面表现最佳的系统。在此期间,系统 3 的平均 PR 为 89%,系统 6 的平均 PR 为 91%。6 月份的单位能量产出最高,两个系统的单位能量产出约为 135 kWh/kWp。结果还显示,采用单晶硅技术的系统比采用单晶硅技术的系统表现更好