育种过程中利用的自然遗传变异主要由减数分裂期间同源染色体之间的相互 DNA 交换(交叉,CO)来保证。CO 的形成发生在减数分裂染色体轴的背景下,减数分裂染色体轴是一种蛋白质结构,姐妹染色单体在减数分裂前期 I 期间沿着该结构排列成环状碱基阵列。在包括大麦 (Hordeum vulgare) 在内的植物中,严格的 CO 调控导致有限数量的 CO 偏向染色体末端,而大部分基因组(特别是间质染色体区域)在育种过程中保持未开发状态。因此,需要新的策略和工具来修改减数分裂重组结果。为了能够对(新的)减数分裂蛋白进行蛋白质组学鉴定,我们在拟南芥减数分裂细胞中使用基于 TurboID (TbID) 的邻近标记对两种减数分裂染色体轴相关蛋白 ASYNAPTIC1 (ASY1) 和 ASYNAPTIC3 (ASY3) 进行标记。在已鉴定的 39 种候选蛋白中,鉴定出大多数已知的轴相关蛋白和新蛋白。在突变体筛选后,我们鉴定出(至少)四种具有减数分裂突变表型的新候选蛋白。其中,一种候选蛋白被发现是联会复合体 (SC) 的一部分。如果没有它,SC 形成就会中断,交叉形成就会减少,而 CO 水平就会增加,CO 干扰几乎被消除。为了快速评估和研究大麦的减数分裂基因,我们在 Cas9 表达植物中建立了大麦条纹花叶病毒诱导的基因编辑 (BSMVIGE) 和基于多重晶体数字 PCR (dPCR) 的单花粉核基因分型。 BSMVIGE 能够分离出减数分裂基因缺陷的大麦植物,而无需稳定的遗传转化,而单花粉核基因分型能够在不增加分离后代群体的情况下高通量评估重组率。我们的装置应用于大麦中的各种减数分裂基因,表明大麦重组格局可以改变。总之,基于 TbID 的邻近标记能够识别减数分裂细胞等稀有细胞类型中的蛋白质邻近蛋白,而 BSMVIGE 与单花粉核基因分型相结合,能够快速解析大麦以及其他作物中的减数分裂基因功能。