摘要近年来,GPT-3,BERT和GPT-4(例如GPT-3,BERT和GPT-4)的大型语言模型在自然语言处理领域取得了重大进步,增强了诸如文档摘要,语言翻译和问题答案之类的任务。尽管有这些好处,但这些模型产生的文本的真实性和信誉引起了社会问题,包括错误信息和窃。为了解决这些问题,PAN组织已经启动了一系列任务,以区分机器生成的文本和人文所写的文本。本文提出了基于Bert和Bilstm的生成AI作者身份验证模型,该模型通过将变压器编码器与多文本特征技术相结合,从而增强了文本歧视功能。该模型利用了预处理的BERT进行深度特征提取,并结合了由Spacy计算出的其他文本功能,由Bilstm和Transformer编码器进一步处理进行分类。实验结果表明,该模型在PAN验证数据集上达到平均得分为0.971,超过了所有基线模型。这种方法不仅提高了检测准确性,而且还提高了对各种文本类型的适应性,这对于保持自动内容生成时代的信息的真实性和可靠性至关重要。
命名实体识别是一项信息提取任务,旨在识别文本中的命名实体并将其分类为预定义的类别。嵌套的命名实体识别涉及检测外部实体和内部实体。Bionne竞争[1]是CLEF 2024 Bioasq Lab [2]的一部分,重点是从生物医学文本中提取嵌套的实体。嵌套命名实体类型包括解剖(解剖学),化学物质(化学),疾病(DISO),生理学(物理),科学发现(发现),受伤或中毒损害(伤害_poisoning),实验室程序(LABPROC)和医疗设备(设备)[3]。挑战提供俄罗斯,英语和双语曲目。对于英语曲目,组织者提供了一个带有50个记录和一个带有50个记录的验证的培训集。每个记录都包含一个文本,即PubMed摘要,以及以Brat格式注释的实体列表,其本文中实体的起始和结束位置。在测试阶段,组织者发布了一个带有154个摘要和346个额外文件的测试集,总共有500个记录。我们的团队专注于Bionne English Track。我们的系统使用大型语言模型(特别是Mixtral 8x7b指示模型[4])和一个生物医学模型来查找文章中的实体。然后,系统使用统一的医学语言系统(UMLS)语义类型来过滤和汇总实体。实现可以在GitHub 1上找到。
摘要 —EEG 信号是复杂的低频信号。因此,它们很容易受到外界因素的影响。EEG 伪影去除在神经科学中至关重要,因为伪影会对 EEG 分析结果产生重大影响。在这些伪影中,眼部伪影的去除最具挑战性。在本研究中,通过开发基于双向长短期记忆 (BiLSTM) 的深度学习 (DL) 模型,提出了一种新颖的眼部伪影去除方法。我们通过结合 EEGdenoiseNet 和 DEAP 数据集创建了一个基准数据集来训练和测试所提出的 DL 模型。我们还通过在不同 SNR 水平下用 EOG 污染地面真实干净的 EEG 信号来增强数据。然后使用通过小波同步压缩变换 (WSST) 获得的高度局部化时频 (TF) 系数将 BiLSTM 网络馈送到从增强信号中提取的特征。我们还将基于 WSST 的 DL 模型结果与传统 TF 分析 (TFA) 方法,即短时傅里叶变换 (STFT) 和连续小波变换 (CWT) 以及增强原始信号进行了比较。首次提出的基于 BiLSTM 的 WSST-Net 模型获得了 0.3066 的最佳平均 MSE 值。我们的结果表明,与传统 TF 和原始信号方法相比,WSST-Net 模型显著提高了伪影去除性能。此外,所提出的 EOG 去除方法表明,它优于文献中许多传统和基于 DL 的眼部伪影去除方法。索引词 —EEG、眼部伪影、深度学习、LSTM、BiLSTM、WSST、STFT、CWT。
摘要 — 智能控制模型对于优化电力系统和电力电子设备的运行和效率至关重要。相对而言,为了弥补在实现平稳和更快的最佳控制方面的现有差距,本文提出了一种基于大脑情感学习的智能控制器 (BELBIC) 的新方法,该方法采用双向长短期记忆 (BiLSTM) 模型,应用于直流电机的速度调节。BELBIC 模块从电机的速度输出接收实时反馈,它会根据不断变化的条件进行动态调整,主动控制电机的速度。此外,BiLSTM 模型通过逐步预测准确预测系统的未来输出来运行。执行后,将计算关键绩效指标 (KPI),例如 MAE、MSE、RMSE 和 R 2 ,以评估系统的准确性和预测能力。此外,还考虑了利用 KPI 来评估开发的 BELBIC-BiLSTM 系统效率的综合结果。
脑血管疾病(如中风)是全球范围内导致死亡和残疾的主要原因之一,可以预防和治疗。早期识别中风并及时治疗有助于减轻疾病负担并改善临床疗效。由于机器学习技术可用于识别中风,因此近年来引起了广泛关注。该项目的目标是寻找可靠的技术、算法和特征,以协助医务人员就中风预防和治疗做出明智的决定。为了实现这一目标,我们创建了一个早期中风识别系统,该系统使用脑部 CT 扫描结合遗传算法和双向长短期记忆 (BiLSTM) 在极早期识别中风。基于神经网络的遗传方法用于识别图像中与分类最相关的方面。随后将这些特征纳入 BiLSTM 模型。为了评估系统的整体功效,采用了所有这些标准。建议的诊断方法的准确率为 96.5%。此外,我们还根据朴素贝叶斯、支持向量机、随机森林、决策树和逻辑回归评估了建议模型的性能。
摘要 - 本研究论文探讨了社交网络领域内的网络欺凌检测的关键问题,并对各种机器学习和深度学习技术进行了全面检查。该研究通过使用标准指标进行严格评估来研究这些方法的性能,包括准确性,精度,召回,F-MEAC和AUC-ROC。这些发现突出了深度学习模型的显着功效,尤其是双向长期记忆(BILSTM)体系结构,始终优于各种分类任务的替代方法。混乱矩阵和图形表示进一步阐明了模型性能,强调了基于Bilstm的模型的显着能力,可以准确识别和对网络欺凌实例进行分类。这些结果强调了高级神经网络结构在捕获在线仇恨言论和进攻内容的复杂性方面的重要性。这项研究通过促进对网络欺凌的早期识别和缓解来促进更安全,更具包容性的在线社区的宝贵见解。未来的调查可能会探讨混合方法,附加功能集成或实时检测系统,以进一步完善和推进解决这一关键社会关注的最新问题。
摘要:基于运动想象的脑电解码是脑机接口技术的重要组成部分,是决定脑机接口整体性能的重要指标。由于运动想象脑电特征分析的复杂性,传统的分类模型严重依赖于信号预处理和特征设计阶段。深度学习中的端到端神经网络已经被应用于运动想象脑电的分类任务处理并显示出良好的效果。本研究采用卷积神经网络(CNN)和长短期记忆网络(LSTM)的组合从脑电信号中获取空间信息和时间相关性,跨层连接的使用减少了网络梯度弥散问题,增强了网络模型整体的稳定性。通过融合CNN、BiLSTM和ResNet(本研究中称为CLRNet)对运动想象脑电进行解码,在BCI Competition IV数据集2a上证明了该网络模型的有效性,融合CNN和BiLSTM的网络模型在四类运动想象模式分类中取得了87.0%的准确率。通过加入ResNet进行跨层连接,增强了网络稳定性,进一步提升了2.0%的分类准确率,达到89.0%的分类准确率。实验结果表明CLRNet在运动想象脑电数据集的解码方面具有良好的性能。本研究为脑机接口技术研究中的运动想象脑电解码提供了更好的解决方案。
摘要 - 在信息和数据是有价值的资产的时代,网络安全已变得至关重要。需要有效的网络入侵检测系统(NID)来保护敏感的数据和信息从网络攻击中。许多研究使用机器学习算法和网络数据集创建了NID,这些数据集无法准确反映实际的网络数据流。增加硬件功能和处理大数据的能力使深度学习成为开发NID的首选方法。这项研究使用两种深度学习算法开发了一个NIDS模型:卷积神经网络(CNN)和双向长期术语记忆(BILSTM)。cnn提取了提出的模型中的空间特征,而Bilstm提取了时间特征。使用两个公开可用的基准数据集CICIDS2017和UNSW-NB15,用于评估模型。所提出的模型在准确性方面超过了先前的方法,在CICIDS2017数据集中,二进制和多类分类的二进制和多类分类达到了99.83%和99.81%。在UNSW-NB15数据集上,该模型分别为二进制和多类分类的精度分别达到94.22%和82.91%。还使用主组件分析(PCA)用于功能工程,以提高模型训练的速度并将现有功能降低到十个维度,而不会显着影响模型的性能。关键字 - 双向长期记忆,卷积神经网络,深度学习,网络入侵检测系统,主成分分析
摘要 — 在本文中,提出了一种自动识别心理工作量相对变化的新解决方案。使用可穿戴传感器收集 26 名人类受试者在执行三个难度级别 n ∈{1, 2, 3} 的 n-back 任务时的 EEG、EDA、PPG 和眼动追踪数据。目标是通过将当前信号窗口与前一个信号窗口进行比较来识别心理工作量是增加、减少还是稳定。所提出的三类分类器主要使用 CNN 层和新颖的合并层,该合并层系统地捕获两个检查窗口的局部段之间的相互作用。事实上,它受到了基于 Transformer 和 CNN 的网络在时间序列分类方面的竞争成功的启发。在所提出的解决方案利用了 CNN 网络的效率的同时,由于提出了合并层,它还与 Transformer 类似,具有捕获序列局部事件之间相互作用的能力。在准确性方面,实验结果表明,在眼球方向、PPG 和 EEG 数据上,所提出的解决方案优于经典 CNN、BiLSTM 和 transformer 网络,而在眼球瞳孔直径和 EDA 数据上,其性能与 transformer 网络相当。实验结果显示,每个时期的平均训练时间明显小于 transformer 和 BiLSTM 网络。索引术语——心理工作量 (MWL)、深度神经网络 (DNN)、时间序列分类 (TSC)、眼动追踪、光电容积图 (PPG)、脑电图 (EEG)、皮肤电活动 (EDA)、n-back 任务、transformer 神经网络、卷积神经网络 (CNN)。
摘要非编码RNA(NCRNA)序列的准确分类对于晚期非编码基因组注释和分析是关键的,这是基因组学的基本方面,促进了对NCRNA功能和各种生物学过程中的调节机制的理解。尽管已经采用了传统的机器学习方法来区分NCRNA,但这些通常需要广泛的功能工程。最近,深度学习算法在NCRNA分类方面提供了进步。这项研究介绍了BiodeEpfuse,这是一个混合深度学习框架,该框架整合了卷积神经网络(CNN)或双向长期记忆(BILSTM)网络具有手工制作的特征,以提高精度。该框架采用了K-mer的一hot,k-mer词典的组合,以及用于输入表示的特征提取技术。提取的特征,嵌入到深网中时,可以最佳利用NCRNA序列的空间和顺序细微差别。使用来自细菌生物的基准数据集和现实世界RNA样品,我们评估了生物脱皮物的性能。结果在NCRNA分类中表现出很高的精度,强调了我们工具在应对复杂NCRNA序列数据挑战方面的鲁棒性。CNN或Bilstm与外部特征有效的预示了有希望的未来研究方向的有效融合,尤其是在完善NCRNA分类器并深化对NCRNA中的NCRNA中,对细胞过程和疾病表现。除了在细菌生物的背景下使用其原始应用外,整合到我们框架中的方法和技术还可以使生物脱发有效地在各种和更宽的领域中有效。