获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
在许多神经形态工作流程中,模拟器在重要任务中发挥着至关重要的作用,例如训练脉冲神经网络、运行神经科学模拟以及设计、实施和测试神经形态算法。当前可用的模拟器适用于神经科学工作流程(例如 NEST 和 Brian2)或深度学习工作流程(例如 BindsNET)。问题是,基于神经科学的模拟器速度慢且可扩展性不强,而基于深度学习的模拟器不支持神经形态工作负载的某些典型功能(例如突触延迟)。在本文中,我们解决了文献中的这一空白,并提出了 SuperNeuro,这是一种快速且可扩展的神经形态计算模拟器,能够进行同质和异构模拟以及 GPU 加速。我们还提供了初步结果,将 SuperNeuro 与广泛使用的神经形态模拟器(如 NEST、Brian2 和 BindsNET)在计算时间方面进行了比较。我们证明,对于小型稀疏网络,SuperNeuro 比其他一些模拟器快约 10 × –300 倍。对于大型稀疏网络和大型密集网络,SuperNeuro 比其他模拟器分别快约 2.2 × –3.4 倍。