风险水平是定义危害的概率或频率的结合,以及后果的大小。在下面的评估中,有助于评估风险评估的每个要素都被指定为“非常低”,“低”,“中”或“高”评级,以描述其对风险最终确定的影响并对风险程度进行排名。定义基于环境机构2009年风险评估指南的定义。
摘要:通过灰尘事件对生物溶质的远距离运输会显着影响大气,生物圈和人际的生态和气象网络。生物素不仅会引起严重的公共卫生风险,而且还充当有效的冰核,可在水文周期中诱导云形成和降水。为了建立生物溶质的风险管理对地球系统的影响,必须在不同的环境条件下对生物溶质进行大规模研究。为此,开展了尘埃– bioaerosol(Dubi)现场运动,以调查2016年至2021年东亚39个地点的约950个样品,以调查生物溶质的分布。使用荧光显微镜观测和高通量DNA测序进一步分析了生物溶质溶胶的浓度和社区结构,并将这些因素与PM 10和诸如PM 10和ARISISION的环境因素进行了比较。结果表明,旱地位点的微生物浓度在统计学上高于湿地部位的微生物浓度,而在旱地,微生物与当时的粒子比的比率高于潮湿区域。每微克细胞PM 10的微生物细胞减少,PM 10增加。每个位点的空气颗粒比例随季节的变化差异很大。在旱地中,空气传播细菌的丰富性和多样性明显高于半干旱地区,而社区结构在所有采样地点之间都是稳定的。杜比现场运动提高了我们对东亚尘埃运输途径的生物溶质特征变化的理解,以及在气候变暖趋势下的生物溶质质量变化,支持降低公共卫生风险的努力。
摘要:除具有气溶胶特性外,生物学起源的气溶胶(被称为生物紫色)具有生命系统的气溶胶,可为它们提供一些具有促成功能的活性。从科学到技术,世界各地的可见进步是在19日19日大流行期间和期间在Bioaerosol领域取得的。 在这里,鉴于人类世和一个健康概念,强调和赞赏,包括空气质量,气候和人类健康,包括空气质量,气候和人类健康在内的角色。 特别是,我们认识到在雾化空气污染,过敏性花粉和生物Aerosol参与下,有机生物学在感染和炎症相关的非传染性疾病中的重要性。 未来的跨学科研究着重于空气中微生物的化学和生物学过程,新兴病原体和过敏原的空气传播以及生物溶质溶胶暴露与人类微生物组的发展和变化之间的关联,以阐明生物溶质与地球系统的相互作用。从科学到技术,世界各地的可见进步是在19日19日大流行期间和期间在Bioaerosol领域取得的。在这里,鉴于人类世和一个健康概念,强调和赞赏,包括空气质量,气候和人类健康,包括空气质量,气候和人类健康在内的角色。特别是,我们认识到在雾化空气污染,过敏性花粉和生物Aerosol参与下,有机生物学在感染和炎症相关的非传染性疾病中的重要性。未来的跨学科研究着重于空气中微生物的化学和生物学过程,新兴病原体和过敏原的空气传播以及生物溶质溶胶暴露与人类微生物组的发展和变化之间的关联,以阐明生物溶质与地球系统的相互作用。
抽象的紫外线辐射(UVGI)和臭氧消毒是在高风险环境中缓解病原微生物的空气传播的关键方法,尤其是在呼吸道病毒病原体(如SARS-COV-2和Avian Infiean Infuenza inflienza and Avian inf uenza)中的出现。这项研究定量研究了紫外线和臭氧对生物溶质溶质中大肠杆菌生存能力的影响,特别关注大肠杆菌的生存能力如何依赖于生物溶质醇的大小,这是一个关键因素,它是确定人类静止性系统和bioaerosolols进化环境中沉积模式的关键因素。本研究使用了一个受控的小型实验室,在整个暴露时间(2 - 6 s)中,将大肠杆菌悬浮液燃烧并持有不同水平的UVGI和臭氧水平。由于暴露时间从2到6 s增加,并且在使用uvgi和ozone和ozone(65 - 131 ppb)时,发现大肠杆菌的归一化生存力显着降低了。我们还发现,与较大的尺寸(0.5 - 2.5μm)相比,UVGI降低了生物溶质中大肠杆菌的归一化活力(0.25 - 0.5μm)。然而,当组合紫外线和臭氧时,对于较小的粒径,归一化的活力高于较大的粒径。这些发现为有效的UVGI消毒工程方法的发展提供了见解,以控制高风险环境中致病性微生物的传播。通过理解微生物在各种生物质量大小中的生存能力的影响,我们可以优化紫外线和臭氧技术,以降低病原体的空气传播的潜在风险。
摘要 - 该研究旨在隔离和鉴定加德满都市固体废物及其相关的生物溶质中存在的细菌和真菌(霉菌)。总共10个样本;从加德满都市的5个开放式垃圾场收集的5种不同的固体废物样品和5种不同的生物美感样品被运送到圣Xavier学院的微生物学实验室进行处理。标准微生物程序以鉴定分离株。使用Kirby-Bauer磁盘扩散方法来确定CLSI 2020标准后细菌分离株的抗生素敏感性。在收集的固体废物样品中,细菌菌落计数范围为1.27×10 8到2.8×10 8 CFU/ml,而真菌菌落数量范围为1×10 5到4×10 5 CFU/ml。的细菌菌落从116至> 300 CFU/90mm/15分钟范围内的细菌菌落计数,而真菌菌落数量在2到6 CFU/90mm/15分钟之间。在48种细菌和34个霉菌中,杆菌属杆菌属。(27%)和尼日尔曲曲霉(29%)比其他分离株占主导地位。柠檬酸菌属,沙门氏菌属和大肠杆菌从垃圾场S3的固体废物样品中分离出来,对所使用的不同抗生素显示出最大的耐药性。来自固体废物样品和生物溶质样品的常见微生物分离株包括7种不同的细菌和4种不同的霉菌。在废物垃圾场中存在抗生素耐药细菌和致病真菌带来与公共卫生相关的风险。
空气中发现的空气动力学直径不同的颗粒由于对人类健康的影响而成为优先污染物。1大气颗粒物的很大一部分是生物素,2-4,由生物学来源的颗粒组成,包括细菌,真菌,古细菌,病毒,花粉,其碎片,成分和副产物,例如DNA,内毒素,内毒素和霉菌毒素。监测生物杂质对于评估空气质量,尤其是关于公共卫生,环境生态学和与大气化学有关的方面至关重要的。因为在典型的室内和室外环境中的生物溶质浓度相对较低或经历了强烈的时间波动,因此没有生物素溶胶采样器可以使用单个分析工具来确定它们中存在的微生物的特定特征,因此存在强大的相互依存性,因此在研究中存在循环依赖性的工具,并研究了工具技术和工具技术和工具技术。5,6
摘要。生物颗粒物质或生物溶质醇是大气气溶胶的子集。他们通过几种知识较低的机制影响了气候,空气质量和健康。尤其是,对生物Aerosol的Viabil ity与空气质量或气象条件之间可能关系的定量研究是一个开放且相关的问题。通过分析在活动内运动中收集的数据来检索这种可观的相关性的困难可以使在大气模拟室内(ASC)内部控制良好的条件下进行的有针对性实验受益。chambre(气溶胶建模室和生物 - 大氧溶胶研究室)是热那亚(意大利)设计和构建的ASC,旨在对生物溶质溶胶进行实验研究。在本文中,我们关注细菌生存能力。开发并进行了彻底测试,以培养合适的细菌种群(大肠杆菌),在可行细胞的腔室内进行雾化和注入,暴露于Chambre内部的可行性变化,在选定的条件下保持,并在最佳条件下持有,并在最终饲养可行细菌的浓度。整个过程显示,当Chambre保持在参考基线状态时,总(t)和可行的大肠杆菌分别为153和32分钟,V:T:T寿命比为40±5分钟。变异的系数13%显示了该方案对细菌暴露于其他的生存能力的敏感性也对生存能力的变化(例如污染)条件。目前的结果为首先结果显示了将大肠杆菌菌株暴露于无X浓度和太阳照射的可行性降低,并进行了讨论。
土壤,水和空气微生物学简介1-埃德孔:土壤微生物的特征2-埃德芬:土壤微生物的数量和分布3- edaphic因素:水,渗透压,氧化还原潜力,土壤pH,…。4 - Activity of microorganisms 5 - Soil bioremediation 6 - Water and water organisms 7 - Polluted water organisms and Water health standard 8 - Waste water treatment 9 - The air as an environment of microorganisms 10 - Adaptation of microorganisms to the air environment, Biological aerosols 11 - Mechanisms protecting lungs against bioaerosol penetration 12 - Survival and spread of bioaerosols,生物气溶胶作为人类的危险来源13-
许多自然发生的微生物(细菌,霉菌,真菌)会导致健康不良。常规和反复接触高浓度的生物溶质可能会导致呼吸道疾病的发展,包括哮喘,炎症和气道刺激,眼睛的刺激和胃肠道疾病。表1下面详细介绍了暴露于暴露的一般健康状况(这些状况并非特定于浪费和回收利用)。在一系列行业(包括废物和回收,尤其是堆肥)中,与Bioaerosol暴露相关的健康问题众所周知。虽然没有阈值限制以高于事实证明健康影响的阈值限制,但可能存在剂量反应关系,这意味着产生最高暴露的过程更有可能导致健康状况不佳。表1。总结报告了暴露于暴露的健康状况