动脉、植入式设备(如起搏器或植入式除颤器),或在最极端的情况下移植整个心脏(Aronow,2009)。然而,这些疗法并不能直接修复心脏受损的组织。为此,人们进行了无数次尝试,将干细胞衍生的心肌细胞(CM)直接整合到梗塞的心脏中(Silver 等人,2021),无论是单细胞植入(Lee 等人,2024)还是实验室制造的心脏贴片(Liu 等人,2024)。迄今为止,仍然存在阻碍这些治疗成功的重大挑战,例如细胞保留(Wu 等人,2021 年)、由于干细胞分化不完全而导致的畸胎瘤形成风险(Kawamura 等人,2016 年)或缺乏电生理整合(Gepstein 等人,2010 年;Liao 等人,2010 年)。解决这些问题的一步是持续生成干细胞衍生的成熟 CM,这些 CM 在移植后可以通过连接蛋白电耦合到现有的心脏组织(Roell 等人,2007 年)并对电信号作出反应以控制心跳(Mandel 等人,2012 年)。电信号对于体内心脏组织的发育非常重要(Thomas 等人,2018 年;Hirota 等人,1985 年)。体外电刺激 (ES) 此前已被探索作为心脏细胞成熟和功能的调节剂,特别是在人类诱导多能干细胞衍生的 CM (hiPSC-CM) 中 (Ronaldson-Bouchard 等人,2019 年;Ma 等人,2018 年;Hernández 等人,2018 年)。然而,这些研究的结果并不一致。虽然大多数研究表明,一定量的直接耦合脉动 ES 有利于 CM 成熟,但尚未就最佳刺激参数达成共识,包括刺激信号的频率、幅度和脉冲持续时间 (Dai 等人,2021 年)。虽然大多数已发表的研究都是使用 3 – 6 V/cm 范围内的电场强度进行的(Ruan 等人,2016 年;Crestani 等人,2020 年;Chan 等人,2013 年),但其他研究报告称 ES 低至 2 V/cm(Hirt 等人,2014 年)或高达 9 V/cm(Ronaldson-Bouchard 等人,2018 年)。研究在 ES 信号的频率(Tandon 等人,2011 年)和持续时间(Geng 等人,2018 年;Yoshida 等人,2019 年)以及开始此类刺激的发育时间点(Crestani 等人,2020 年;LaBarge 等人,2019 年)方面也存在显著差异。个别研究可能会同时改变多个参数,例如:电刺激的幅度、脉冲频率、持续时间和发展时间。鉴于其中一些研究(Gabetti 等人,2023 年;Hu 等人,2024 年)报告了多个参数变化的结果,但没有适当的控制,因此很难区分哪些参数对于指导心脏分化至关重要。生物反应器是动态细胞和组织培养容器,用于为体外生长的细胞提供刺激,从而重现静态培养条件下通常找不到的环境线索(Licata 等人,2023 年)。尽管最近开发了生物反应器来向心脏细胞传递电信号,但作者往往未能提供足够的细节来确保工作可以重现(Gabetti 等人,2023 年;Hu 等人,2024 年)。在本研究中,我们提出了一种生物反应器,用于精确、可控的电刺激体外生长在 2D 单层或 3D 球体中的细胞。该生物反应器设计用于低剪切流体混合,以增强营养物质的利用率,同时还允许在整个实验期间使用
Bioen 521-医疗设备的设计这个基于多学科问题的学习模块是设计旨在通过更广泛的实用设计和商业挑战桥接技术知识,并旨在通过案例研究来提高学生在医疗设备设计领域的知识和技能。它将使学生能够利用适当的设计路线来建立对新技术和新兴技术的有效实施策略的批判性理解和意识。Bioen 461- BME中的信号和系统本课程旨在向学生介绍信号和系统分析和操纵的基础知识及其在医疗领域中的应用。本课程还增强了差分计算中的数学知识,并添加了通用的定量分析工具,例如傅立叶分析。课程主题包括:拉普拉斯变换,傅立叶(系列和积分)变换,线性系统的卷积和响应,频率响应,bode图和极地图。采样,离散时间信号;离散时间信号,光谱估计,数据记录和数字过滤器的频率分析;以及通过时间域和频域编码的生物医学信号的压缩。包括生物医学应用的实验室和计算经验。Bioen 442-在本课程中,通信系统和网络简介学生将学习通信系统和网络的重要方法,体系结构和实现。课程主题包括模拟通信系统的分析和设计:AM和FM调制和解调。AM和FM系统中的噪声。数字通信系统:采样,
AUEN 2025的亮点包括:•第4届国际计算和信息技术趋势会议(CCITT 2025)•第4届国际NLP国际会议NLP,数据挖掘和机器学习(NLDML 2025)•第10届国际机械工程趋势国际趋势(RTME 2025)(RTME 2025)•第4届International International Onsewers on International on International on International on International on Technation on Interlection on Interlection on Technical 20225•8 thec 2025)•8 thecect intricectect intricectect intricect 2025) •第8届国际生物医学工程与科学会议(Bioen 2025)•第8届国际土木工程与城市规划国际会议(CEU 2025)注册参与者非作者 /合着者 /合着者 /简单参与者(无纸)100 usd(诉讼)(诉讼)您可以在这里与您:Aueen@auen@auen@auen@auen@auen2025.org(OR)
技术创新既可以带来好处,也会带来无法预料的有害后果。从核能、生物工程到转基因食品[1-3],人工智能(AI)领域的创新也不例外。一方面,事实证明人工智能可以提高组织绩效和决策能力[4]。通过机器学习技术和深度神经网络,算法能够学习并成功解决比以往更复杂的任务[5]。另一方面,与人类一样,人工智能也可能无法实现预期目标,原因是它们使用的训练数据可能存在偏差,或者是它们的建议和决策可能产生意想不到的负面影响[6、7]。由于人工智能被认为会影响司法、隐私、股票和商品交易、劳动力市场,甚至民主选举的结果[8-12],世界各国政府已开始认识到人工智能对维护社会利益、正义和福利构成了重大的全球性威胁[13]。因此,一个关键问题出现了:我们如何才能培育可持续的人工智能,使之对人类生活无害,反而有益?[14]。商业和技术伦理文献中最近的研究都强调并讨论了协商参与对塑造负责任创新的价值[3、15-17]。由于私营企业经常发起和引导技术创新,可以说需要某种形式的“扩展企业公民身份”[18],让有道德的企业与当地参与者、政府和民间组织进行接触。
土耳其伊斯坦布尔,2022 年 9 月 [-] — 霍尼韦尔 (纳斯达克股票代码:HON) 今天宣布,Biotrend Energy(伊斯坦布尔证券交易所代码:BIOEN)将在 Biotrend Energy 计划在土耳其的塑料回收工厂中应用霍尼韦尔的 UpCycle 工艺技术。该工厂将把混合废塑料转化为再生聚合物原料 (RPF),从而推动塑料循环经济的发展。建成后,它将成为土耳其首个采用霍尼韦尔 UpCycle 工艺技术的商业化废塑料回收工厂。计划中的先进回收工厂预计每年能够利用霍尼韦尔的 UpCycle 工艺技术将 30,000 公吨混合废塑料转化为霍尼韦尔再生聚合物原料。霍尼韦尔 UOP 将提供相关工程和技术服务,包括工厂生命周期内的启动、调试和技术支持服务。该项目标志着霍尼韦尔与 Biotrend Energy 在土耳其先进塑料回收领域的合作正式启动,双方计划未来合作建设多个废塑料回收设施。Biotrend Energy 首席执行官 Osman Nuri Vardı 表示:“Biotrend Energy 是土耳其废物管理领域的领先企业,正在投资可持续循环经济。我完全有信心,我们将与霍尼韦尔一起引领这一领域。Biotrend Energy 在废物管理方面的经验,加上霍尼韦尔的技术,将为 Biotrend Energy 的可持续发展做出贡献。”目前,Biotrend 只能回收一小部分机械回收材料。此外,由于塑料生产过程中的污染、颜色和添加剂等因素,某些类型的塑料废物无法通过机械回收。目前,无法通过机械回收的塑料要么转化为垃圾衍生燃料 (RDF),要么被存放在垃圾填埋场。霍尼韦尔 UpCycle 工艺技术中使用的化学回收可以处理更广泛的废塑料,支持 Biotrend 增加循环材料回收量的努力。霍尼韦尔土耳其、以色列和中亚地区总裁 Uygar Doyuran 表示:“霍尼韦尔的 UpCycle 工艺技术将帮助 Biotrend Energy 应对土耳其的塑料废物问题。”土耳其将能够增加可回收塑料的范围,从而有可能取代一部分化石原料用于新塑料生产。”今天的公告扩大了 UpCycle 工艺技术的足迹,这是霍尼韦尔最近在美国、西班牙和中国发布的公告的延续。Biotrend Energy 是土耳其综合废物管理行业的先驱之一,处理 4,500 吨废物,每年,Biotrend Energy 在土耳其境内的 18 家工厂(包括获得预许可的工厂)处理 2000 吨废物。Biotrend Energy 的业务包括废物转运、回收、填埋、废物转化为能源以及生产有机肥料(堆肥)和 RDF。霍尼韦尔的 UpCycle 工艺技术是一种现成的技术,它利用行业领先的分子转化、热解和污染物管理技术将废塑料转化为 RPF,然后用于制造新塑料。UpCycle 工艺技术扩大了可回收塑料的类型,包括原本无法回收的废塑料,包括彩色、柔性、多层包装和聚苯乙烯。