3D生物打印(即带有细胞的3D打印)的最新进展已经产生了其产生用于移植组织的可能性的潜力,但到目前为止,概念证明的研究已限于构造简单的简单组织,例如皮肤和心脏斑块。[1]主要的限制因素之一是缺乏生物学,同时具有3D生物构图复杂组织所需的特性,以及支持体外和体内组织成熟的特定生物学提示。[2]已经探索了几种技术,以增强工程材料的生物学活性和生物学的生物学活性,例如合并特定配体,单个外部外部基质(ECM)组件(ECM)组件或材料表面工程以增强细胞附着和血管化。但是,这些材料通常集中于在组织发育的一个阶段增强生物学活性(例如,细胞附着或生长因子以促进血管化)。在空间中需要多个生物学和提示,
胶质母细胞瘤 (GBM) 是最常见、最具侵袭性的成人原发性脑癌,占所有恶性中枢神经系统 (CNS) 肿瘤的 14.6%。 [1] 美国患者的五年相对生存率为 6.8%,在所有原发性恶性 CNS 肿瘤中排名最低。 [1] 尽管过去几十年来做出了巨大努力,但 GBM 患者的预后却进展甚微。GBM 的标准治疗包括最大限度的安全手术切除,然后进行同时进行的口服甲基化剂替莫唑胺 (TMZ) 化放疗,然后进行辅助 TMZ。以前尝试过使用半开颅术进行完全手术切除,但由于肿瘤细胞弥漫性侵袭到脑部并且需要保留基本的脑功能,因此未能治愈。GBM 细胞以不同的方式侵入脑实质,包括以单细胞形式,并作为复发的储存器。对 GBM 进行广泛的分子分析已鉴定出反映异质性肿瘤遗传学和表观遗传学的不同转录亚型。TME 内肿瘤细胞、基质细胞和细胞外基质 (ECM) 之间复杂的细胞和细胞基质相互作用,导致 GBM 肿瘤生态系统动态且具有免疫抑制性,对现有治疗方法具有高度抵抗性。普遍复发、肿瘤内和肿瘤间高度异质性以及复发性 GBM 对治疗的抵抗性导致预后不良,70 岁以下患者的中位生存期仅为 14.6 个月。[2] 与其他实体瘤相比,将治疗药物递送到 GBM 肿瘤部位尤其具有挑战性,因为药物和细胞在脑部独特的血管屏障——血脑屏障 (BBB) 上的运输受到限制。 BBB 是循环血液与脑实质之间的一道屏障,可防止血源性病原体或有毒物质进入中枢神经系统,并维持中枢神经系统稳态。[3] BBB 可排除 98% 以上的小分子药物,并严格调节淋巴细胞外渗,限制化疗药物和效应 T 细胞在胶质母细胞瘤组织中的积累。[4] 调节 BBB 或绕过屏障可促进某些脑肿瘤治疗,这表明功能性 BBB 的存在可能对准确评估胶质母细胞瘤治疗至关重要。[5–7] 人们对重新利用 FDA 批准的
摘要:牙周组织由支撑组织及其功能组成,它促进了粘弹性,本体感受传感器和牙齿锚固。其疾病的进行性破坏导致骨骼和牙周韧带的丧失。因此,不断开发生物材料以恢复组织功能。各种技术被用于促进再生牙科,包括使用生物焦制剂的3D生物打印。本文旨在审查牙周组织再生中使用的不同类型的生物墨水制剂和3D生物打印技术。不同的技术,并将不同的材料添加到生物学上,以改善过程并创建支持细胞生存能力,增殖,分化和量化量化的稳定性的生物互联。
摘要本研究旨在提出从猪半月板中提取DECM的易于扩展,具有成本效益的过程,该过程致力于生物互联制剂和3D生物打印。由于其软骨(例如结构和机械鲁棒性),弯月面是一种非常苛刻的组织,用于提取和脱落ECM。它的处理构成了很大的困难,并使以前针对软组织开发的方法无用。结合了均质化,水解,超临界二氧化碳(SCCO2)提取和冻干的过程,以应对这一挑战。该方案允许保留其天然化合物和生物相容性,同时提供良好的可打印性,并为细胞增殖和分化为半月板样表型提供刺激性环境。此外,此过程在经济和生态上很友好,因为它不需要使用大量溶剂,洗涤剂或昂贵的酶(DNase)。已经对脱细胞过程进行了精心研究,证明了DNA含量的大幅降低,但仍超过公认的阈值。这项研究进一步探讨了DECM的生物相容性,表明在扩展体外培养过程中,残留的DNA对细胞存活没有不利影响,表明出色的生物相容性。这些发现仅基于DNA含量,挑战了当前对脱细胞化有效性的定义,提出了对生物学作用的更广泛评估。
通过对氨基酸组成的极为精确的控制,用于特定应用。ELR被激发到弹性蛋白序列中,使它们获得了其几种有趣的特性,因此,ELR已成为多种生物应用应用的有用候选[14-16],显示出极好的生物相容性[17],生物降解性和可调节的机械性能和可调节的机械性能。对于3D生物打印应用,更有趣的是,它们表现出由所谓的反温度转变(ITT)定义的热反应性的智能行为。so,在重组剂的水溶液中,低于重组者的过渡温度(TT),聚合物链仍然可溶于由疏水水合构成的随机线圈。如果温度升高到聚合物的TT以上,则诱导疏水性折叠[18],当使用高浓度时会导致水凝胶形成。可以将这种可逆的相变为3D架构矩阵。在设计ELR必须表现出的分子结构以表现为墨水时的难度在于在其自组装过程中诱导可打印性和稳定性的特性,使其自由组装成超分子水凝胶。因此,我们的研究假设是
摘要:基于水凝胶的生物界已成为三维(3D)生物打印领域的关键组成部分,并将许多聚合物用于此目的。大量的专利申请反映了一个竞争性和动态的研究环境,在该环境中,各种实体正在积极开发基于水凝胶的生物学的新配方和应用。随着该领域的不断发展,跟踪这些趋势对于了解技术的未来方向并确定行业中的关键创新和参与者至关重要。这项研究揭示了3D Bioprinting中基于水凝胶的生物学的专利景观的大幅增长,2013年至2024年之间出版了173个专利文件。专利申请的明显增加,特别是从2018年开始,强调了对技术在包括组织工程和再生医学在内的各种应用中潜在潜力的认识。尽管专利申请超过了授予专利,但授予专利的稳定上升表明,创新从概念到受法保护的技术的成熟和过渡。该领域的领先专利申请人包括行业领导者和学术机构。诸如Organovo Inc和Cellink AB等公司正在通过广泛的专利活动推动创新,而学术机构和基金会也做出了重大贡献,突出了一个强大的生态系统,其中工业和学术研究推动了技术的前进。该领域知识产权申请的全球分布广泛,在美国,欧洲和亚洲具有重要的活动。专利管辖区的这种多样性反映了全球在推进生物打印技术的兴趣,尤其是用于医疗保健应用。3D生物构图中基于水凝胶的生物互联的专利分类说明了材料科学,生物技术和先进制造的收敛性。这些分类突出了生物互联的各种应用,从组织再生和干细胞疗法到基于聚合物的多功能生物活性材料的开发。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月10日发布。 https://doi.org/10.1101/2024.08.09.606830 doi:Biorxiv Preprint
摘要。聚合物水凝胶用作计算机辅助的非生物库中,在过去的几年中,用作药物输送工具。新的(3D)生物打印技术的新发展为使用基于水的聚合物药物的药物递送系统创造了新的机会。3D打印可以在特定情况下提供理想的形状或变形,以更好地适应生理功能。3DPRINTING技术的准确性显着高于常规生产技术。一种模型的生物收购生物学物理学特征(机械和流变学),生物学特性对于适当的功能至关重要。它在生物医学研究中充当具有复杂空间结构的增材制造。在这篇评论中,我们概述了3D印刷聚合物水凝胶中的当前开发作为交付和其他平台。
Cristina Eguizabal 博士拥有纳瓦拉大学生物和生物化学科学学位以及 UPV 细胞生物学和实验胚胎学博士学位。他曾在罗马第二大学 Massimo de Felici 教授的实验室工作,并加入英国剑桥大学格登研究所 Anne McLaren-Azim Surani 教授的研究小组。后来,她加入了由胡安·卡洛斯·伊斯皮苏亚 (Juan Carlos Izpisua) 领导的 CMRB,担任高级研究员。他对各种来源的胚胎干细胞和诱导性多能干细胞 (iPS) 以及细胞分化为各种细胞类型有着广泛的了解。 Eguizabal 博士是“SIG-ESHRE 干细胞”的前协调员。生殖生物学和 ART 硕士(UAB-Dexeus)教授。自 2013 年起,Eguizabal 博士一直担任 CVTTH 研究部门负责人以及 IIS Biocruces Bizkaia 细胞疗法、干细胞和组织组负责人。
生物打印正在通过使用喷墨,基于挤出和激光辅助生物打印的先进技术来促进复杂的牙科组织来彻底改变牙科领域。这些方法允许精确地放置细胞和材料,以再生牙髓,牙周组织,牙槽骨和颞下颌关节结构。水凝胶,复合生物互联和含细胞的生物学在脚手架形成和改善细胞生存力中起着至关重要的作用。临床前模型已经证明了对组织再生和牙科植入物生物打印的潜力,早期的临床试验显示出令人鼓舞的结果。然而,仍然存在挑战,包括可伸缩性,材料选择,免疫反应和监管批准。多物质生物打印,实时监测和个性化治疗方法的未来进步将扩大生物打印的临床应用,推动口腔医疗保健中的创新以及改善患者结果。