本期特刊旨在强调分子科学和生物技术的快速进步,这为生物医学研究和治疗学开辟了新的途径。我们强调了该领域当前挑战的跨学科性质,以及解决这些复杂问题的创新方法的开创性潜力。The topics of interest include, but are not limited to, the following: Bioprinting of 3D in vitro skeletal muscle modelsNanoparticles functionalized with toxinsAn update on protein and peptide drug delivery strategiesPeptides and peptide- based biomaterialsSelf-assembled peptide-based hydrogels The integration of bioinformatics tools and methods is critical to achieving the goals of this special issue.本期特刊不仅旨在提出尖端的研究,还刺激进一步的跨学科合作,以寻求生物医学研究和治疗中的创新解决方案。
使用3D激光辅助生物打印系统,在大鼠颅缺损模型中对羟基磷灰石和间充质干细胞的体内印刷; Victor Segalen Bordeaux-2,Inserm U-1026,法国波尔多,2013年,4个月,访问研究员,项目经理:Fabien Guillemot博士。
现代神经科学越来越依赖 3D 模型来研究神经回路、神经再生和神经疾病。人们已经探索了几种不同的生物制造方法来创建 3D 神经组织模型结构。其中,3D 生物打印已显示出成为高通量/高精度生物制造策略的巨大潜力,可以满足对 3D 神经模型日益增长的需求。在这里,我们回顾了神经组织工程的设计原则。将打印技术应用于神经组织模型的生物制造的主要挑战是开发神经生物墨水,即具有可打印性和凝胶化特性且适用于神经组织培养的生物材料。这篇综述介绍了广泛的生物材料以及 3D 神经组织打印的基础知识。此外,还回顾了 3D 生物打印技术的进展,特别是针对生物打印神经模型。最后,讨论了用于评估制造的 2D 和 3D 神经模型的技术,并在可行性和功能性方面进行了比较。
摘要:3D生物打印是一种增材制造过程,它允许生物材料和活细胞的精确定位创建模仿天然组织和器官的3D体系结构。尽管3D生物打印技术正在快速发展,但仍有重大挑战,包括墨水配方的选择有限。在这里,我报告了一系列有关纳米材料(NMS)和聚合物的混合墨水系统的一系列研究,用于通过微分解和数字光处理(DLP)进行高分辨率和高速打印。我们的结果表明,NM聚合物杂交油墨可以设计为具有合适的流变,机械,生物学和化学特征,以同时实现可打印性和细胞/组织兼容性。在本次演讲中突出显示的是3D异质组织模仿,干细胞转运蛋白和微流体细胞培养装置的印刷。我们的研究为制造体外疾病模型和测试平台以及可移植的脚手架提供了有希望的新策略,这些策略可以在生物医学研究,药物发现和干细胞疗法中找到重要的应用。
2。Biosciences and Bioengineering • Cardiac Fibrosis mediated Heart Failure • Tissue engineering • 3D Bioprinting • Regenerative Medicine • Biomaterials • Cell and Molecular Biology • Neuroscience • Aging • Stress response • Protein homeostasis • Nanomedicine • Nanosensing • Metabolic Systems Biology • Metabolomics • Fluxomics • Phytochemistry • Cellular生物处理•植物微生物代谢•气候控制的农业•非酒精性脂肪肝病的代谢和分子机制(NAFLD)•胰岛素分泌中的细胞信号传导•分子和代谢机制•胰岛素抵抗的分子和代谢机制,胰岛素抵抗I N类型2糖尿病,•宿主 - 培养基官员,免疫学,•计算•计算,•计算,•计算,•计算机,•计算,•计算,•计算,•微生物组和肠道相关疾病•自身免疫性疾病•环境的微生物联盟
三维 (3D) 打印是一种令人兴奋的制造技术,它改变了我们治疗各种疾病的方式。3D 打印也称为增材制造,它以逐层方式将材料融合在一起,以构建最终的 3D 产品。该技术使设计过程更加灵活,能够高效生产现成和个性化医疗产品,比传统制造工艺更能满足患者的需求。在骨科手术领域,3D 打印植入物和器械可用于治疗各种疾病,而这些疾病原本很难用传统减材制造的产品来处理。此外,3D 生物打印对骨骼和软骨修复程序产生了重大影响,并有可能彻底改变我们治疗患有衰弱性肌肉骨骼损伤患者的方式。尽管成本可能很高,但随着技术的进步,3D 打印的经济性将会提高,尤其是这项技术的好处已在骨科手术和整个医学领域得到明显体现。本综述概述了 3D 打印技术的基础知识及其在骨科手术中的当前应用,最后简要总结了 3D 生物打印及其未来的潜在影响。
计算:OS,GIT,计算机视觉,Web Dev,Linux,MicroControllers,Python,IoT,Matlab,Shell,Shell,Command Line Wet Law Lav Lab:细胞培养,基因工程和克隆,生物打印设计和模拟:固体工作,流利/comsol,fluent/comsol,comsol,生物制造,逻辑设计。认证:加州大学圣地亚哥分校的生物信息学在Coursera上(2020年5月),John Hopkins University on Coursera的基因组数据科学(2020年5月)
患者面临严重创伤,传染病或肿瘤引起的显着骨缺损时,通常需要手术骨移植才能完全愈合,这使得骨组织成为当今第二常见的移植组织(Migliorini等人,2021年)。传统的自体或同种异体骨移植经常遇到供体短缺,免疫排斥和对次级手术的需求(Dalipi等,2022)。骨组织工程(BTE)有可能通过促进快速骨再生来减轻这些问题。这是通过将官能细胞播种到生物相容性支架上的,在植入以促进骨骼再生之前,在体外培养到成熟。植入的支架为细胞提供了一个栖息地,可帮助营养供应,气体交换和废物清除。随着材料的降解,植入的骨细胞增殖,最终导致骨缺陷的修复(Ellermann等,2023; Jia等,2021)。BTE的关键在于鉴定高度生物相容性,迅速降解,无毒的脚手架材料,并且具有出色的孔隙率和表面生物活性。传统的支架材料,例如生物陶瓷,玻璃,金属和聚合物通常缺乏生物活性,导致诸如不良整合,磨损和腐蚀等问题,从而阻碍了功能性骨再生(Deng等,2023; Abbas et al。,2021;Pazarçeviren等,20221,20221)。虽然复合材料已经解决了单一材料的某些局限性,例如制造复杂性,脆性和对衰老的易感性,继续阻碍BTE的发展(Cannillo等,2021)。3D打印技术通过基于数字模型文件(Yang,2022)将粘合剂(例如金属或塑料)分层(例如粉末状金属或塑料)来构建对象。这项技术简化并加速了骨组织工程脚手架的制造,显着减少了生产时间,同时可以使用复杂的结构来创建个性化的脚手架,这极大地有益于患者损伤的修复(Anandhapadman等人,2022222222年)。尤其是3D生物打印的快速发展将其定位为生产组织工程脚手架材料的最有前途的技术之一,具有应对材料制备和推动材料科学和医学快速发展的主要挑战(Liu等人,2022年)。近年来,低温打印技术的应用进一步提高了脚手架的性能。Gao等。 (2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。 尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。 这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。 此外,本文探讨了如何创新Gao等。(2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。此外,本文探讨了如何创新回应,本文提供了3D生物打印的临床应用的全面摘要,分析了诸如印刷材料的可控降解性,与骨组织的机械兼容性以及植入后生物相容性的问题。